When objects are forced to flow through constrictions their transport can be frustrated temporarily or permanently due to the formation of arches in the region of the bottleneck. While such systems have been intensively studied in the case of solid particles in a gas phase being forced by gravitational forces, the case of solid particles suspended in a liquid phase, forced by the liquid itself, has received much less attention. In this case, the influence of the liquid flow on the transport efficiency is not well understood yet, leading to several apparently trivial but yet unanswered questions, e.
View Article and Find Full Text PDFTwin-screw wet granulation is a crucial unit operation in shifting from pharmaceutical batch to continuous processes, but granulation kinetics as well as residence times are yet poorly understood. Experimental findings are highly dependent on screw configuration as well as formulation, and thus have limited universal validity. In this study, an experimental design with a repetitive screw setup was conducted to measure the effect of specific feed load (SFL), liquid-to-solid ratio (L/S), and inclusion of a distributive feed screw on particle size distribution (PSD) and shape as well as residence time distribution of a hydrophilic lactose/microcrystalline cellulose based formulation.
View Article and Find Full Text PDFTwo-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate simulations in a split-bottom shear cell geometry. The position and velocities of scattered tracer particles are tracked as they move with the bulk flow by analyzing images.
View Article and Find Full Text PDFEur Phys J E Soft Matter
December 2012
A shallow-layer model for granular flows down inclines is completed with a closure relation for the macroscopic bed friction obtained from micro-scale, discrete particle simulations of steady flows over geometrically rough bases with contact friction. Microscopic friction can be different between bulk particles and with particles at the base, where the latter is systematically varied. When extending the known friction closure relation to be a function of both bulk flow and bed properties, surprisingly, we find that the macroscopic bed friction is only weakly dependent on the contact friction of the bed particles and is predominantly determined by the properties of the flowing particles.
View Article and Find Full Text PDF