Replication-coupled gene editing using locked nucleic acid-modified single-stranded DNA oligonucleotides (LMOs) can genetically engineer mammalian cells with high precision at single nucleotide resolution. Based on this method, oligonucleotide-directed mutation screening (ODMS) was developed to determine whether variants of uncertain clinical significance of DNA mismatch repair (MMR) genes can cause Lynch syndrome. In ODMS, the appearance of 6-thioguanine-resistant colonies upon introduction of the variant is indicative for defective MMR and hence pathogenicity.
View Article and Find Full Text PDFThrough transfection of short single-stranded oligodeoxyribonucleotides (ssODNs) small genomic alterations can be introduced into mammalian cells with high precision. ssODNs integrate into the genome during DNA replication, but the resulting heteroduplex is prone to detection by DNA mismatch repair (MMR), which prevents effective gene modification. We have previously demonstrated that the suppressive action of MMR can be avoided when the mismatching nucleotide in the ssODN is a locked nucleic acid (LNA).
View Article and Find Full Text PDFObjective: Hodgkin's lymphoma survivors who were treated with infradiaphragmatic radiotherapy or procarbazine-containing chemotherapy have a fivefold increased risk of developing colorectal cancer (CRC). This study aims to provide insight into the development of therapy-related CRC (t-CRC) by evaluating histopathological and molecular characteristics.
Design: 54 t-CRCs diagnosed in a Hodgkin's lymphoma survivor cohort were analysed for mismatch repair (MMR) proteins by immunohistochemistry, microsatellite instability (MSI) and / mutations.
Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells.
View Article and Find Full Text PDF