Publications by authors named "Thomas W Y Lee"

Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs.

View Article and Find Full Text PDF

Two pharmaceutical polymers with high glass transition temperatures (T > 100 °C), polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), have been assessed for their impact on the storage stability of itraconazole (ITZ) amorphous solid dispersions (ASDs). The results showed that the inhibitory effect of PVPVA on the recrystallization of amorphous ITZ was highly sensitive to surrounding relative humidity (RH), especially at RH above 60%. In contrast, amorphous ITZ in HPMCAS matrix exhibited much stronger resistance to recrystallization even under high RH conditions, reflecting the superior crystallization-inhibitory effect of HPMCAS.

View Article and Find Full Text PDF

Alkyl groups (CH) are prevalent in engineered bionanomaterials used for many intracellular applications, yet how alkyl groups dictate the interactions between nanoparticles and mammalian cells remains incomprehensively investigated. In this work, we report the effect of alkylation on the cellular uptake of densely polyethylene glycol-coated nanoparticles, which are characterized by their limited entry into mammalian cells. Specifically, we prepare densely PEGylated gold nanoparticles that bear alkyl chains of varying carbon chain lengths (n) and loading densities (termed "alkyl-PEG-AuNPs"), followed by investigating their uptake by Kera-308 keratinocytes.

View Article and Find Full Text PDF

The objective of this study was to fabricate dasatinib-loaded nanoparticles and evaluate their efficacy in inhibiting cellular processes of the retinal pigment epithelium (RPE) related to proliferative vitreoretinopathy (PVR), for which there are no approved pharmacological approaches. We successfully encapsulated dasatinib, a poorly soluble multi-targeted tyrosine kinase inhibitor which has great potential for the treatment of PVR, into nanoparticles prepared from micellation of PEG-b-PCL. The size of the nanomicelles was approximately 55nm with a narrow distribution.

View Article and Find Full Text PDF

Solid state manipulation by amorphous solid dispersion has been the subject of intensive research for decades due to their excellent potential for dissolution and bioavailability enhancement. The present review aims to highlight the latest advancement in this area, with focus on the fundamentals, characterization, formulation development and manufacturing of amorphous solid dispersions as well as the new generation amorphization technologies. Additionally, specific applications of amorphous solid dispersion in the formulation of herbal drugs or bioactive natural products are reviewed to reflect the growing interest in this relatively neglected area.

View Article and Find Full Text PDF