Publications by authors named "Thomas W Cornelius"

Defects in nanocrystals can dramatically alter their physical and chemical behavior. It is thus crucial to understand the defect behavior at the nanoscale to enhance material properties. Here, we report three-dimensional defect characterization at the onset of plasticity in a 550 nm Pt nanoparticle.

View Article and Find Full Text PDF

The microstructure of a sub-micrometric gold crystal during nanoindentation is visualized by in situ multi-wavelength Bragg coherent X-ray diffraction imaging. The gold crystal is indented using a custom-built atomic force microscope. A band of deformation attributed to a shear band oriented along the (221) lattice plane is nucleated at the lower left corner of the crystal and propagates towards the crystal center with increasing applied mechanical load.

View Article and Find Full Text PDF

Nanolaminates are extensively studied due to their unique properties, such as impact resistance, high fracture toughness, high strength, and resistance to radiation damage. Varieties of nanolaminates are being fabricated to achieve high strength and fracture toughness. In this study, one such nanolaminate fabricated through accumulative roll bonding (Cu(16)/Nb(16) ARB nanolaminate, where 16 nm is the layer thickness) was used as a test material.

View Article and Find Full Text PDF

Gallium nitride (GaN) is of technological importance for a wide variety of optoelectronic applications. Defects in GaN, like inversion domain boundaries (IDBs), significantly affect the electrical and optical properties of the material. We report, here, on the structural configurations of planar inversion domain boundaries inside n-doped GaN wires measured by Bragg coherent X-ray diffraction imaging.

View Article and Find Full Text PDF

The piezoelectric properties of lanthanum-modified lead zirconate titanate PbLa(ZrTi)O thin films, with = 0, 3 and 12 mol% La, were studied by synchrotron X-ray diffraction under direct (DC) and alternating (AC) electric fields, with AC frequencies covering more than four orders of magnitude. The Bragg reflections for thin films with low lanthanum concentration exhibit a double-peak structure, indicating two contributions, whereas thin films with 12% La possess a well-defined Bragg peak with a single component. In addition, built-in electric fields are revealed for low La concentrations, while they are absent for thin films with 12% of La.

View Article and Find Full Text PDF

Compression of micropillars is followed in situ by a quick nanofocused X-ray scanning microscopy technique combined with 3D reciprocal space mapping. Compared to other attempts using X-ray nanobeams, it avoids any motion or vibration that would lead to a destruction of the sample. The technique consists of scanning both the energy of the incident nanofocused X-ray beam and the in-plane translations of the focusing optics along the X-ray beam.

View Article and Find Full Text PDF

The monochromatic and geometrically anisotropic acoustic field generated by 400 and 120 nm diameter copper nanowires simply dropped on a 10 μm silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both sides of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected.

View Article and Find Full Text PDF

Interfaces between polarity domains in nitride semiconductors, the so-called Inversion Domain Boundaries (IDB), have been widely described, both theoretically and experimentally, as perfect interfaces (without dislocations and vacancies). Although ideal planar IDBs are well documented, the understanding of their configurations and interactions inside crystals relies on perfect-interface assumptions. Here, we report on the microscopic configuration of IDBs inside n-doped gallium nitride wires revealed by coherent X-ray Bragg imaging.

View Article and Find Full Text PDF

We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity.

View Article and Find Full Text PDF

This article reports on the first successful combination of micro Laue (µLaue) diffraction with an atomic force microscope for nanomechanical tests of individual nanostructures. three-point bending on self-suspended gold nanowires was performed on the BM32 beamline at the ESRF using a specially designed atomic force microscope. During the bending process of the self-suspended wire, the evolution of µLaue diffraction patterns was monitored, allowing for extraction of the bending angle of the nanowire.

View Article and Find Full Text PDF

A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area.

View Article and Find Full Text PDF

A novel resonant mechanism involving the interference of a broadband plasmon with the narrowband vibration from molecules is presented. With the use of this concept, we demonstrate experimentally the enormous enhancement of the vibrational signals from less than one attomol of molecules on individual gold nanowires, tailored to act as plasmonic nanoantennas in the infrared. By detuning the resonance via a change in the antenna length, a Fano-type behavior of the spectral signal is observed, which is clearly supported by full electrodynamical calculations.

View Article and Find Full Text PDF