Publications by authors named "Thomas W Chen"

Well plates are widely used in biological experiments, particularly in pharmaceutical sciences and cell biology. Its popularity stems from its versatility to support a variety of fluorescent markers for high throughput monitoring of cellular activities. However, using fluorescent markers in traditional well plates has its own challenges, namely, they can be potentially toxic to cells, and thus, may perturb their biological functions; and it is difficult to monitor multiple analytes concurrently and in real-time inside each well.

View Article and Find Full Text PDF

Obesity is a growing concern in human and equine populations, predisposing to metabolic pathologies and reproductive disturbances. Cellular lipid accumulation and mitochondrial dysfunction play an important role in the pathologic consequences of obesity, which may be mitigated by dietary interventions targeting these processes. We hypothesized that obesity in the mare promotes follicular lipid accumulation and altered mitochondrial function of oocytes and granulosa cells, potentially contributing to impaired fertility in this population.

View Article and Find Full Text PDF

Microfluidics offer many advantages to Point of Care (POC) devices through lower reagent use and smaller size. Additionally, POC devices offer the unique potential to conduct tests outside of the laboratory. In particular, Electro-wetting on Dielectric (EWOD) microfluidics has been shown to be an effective way to move and mix liquids enabling many PoC devices.

View Article and Find Full Text PDF

Advanced maternal age is associated with a decline in fertility and oocyte quality. We used novel metabolic microsensors to assess effects of mare age on single oocyte and embryo metabolic function, which has not yet been similarly investigated in mammalian species. We hypothesized that equine maternal aging affects the metabolic function of oocytes and in vitro-produced early embryos, oocyte mitochondrial DNA (mtDNA) copy number, and relative abundance of metabolites involved in energy metabolism in oocytes and cumulus cells.

View Article and Find Full Text PDF

Objective: The purpose of this paper is to demonstrate the use of 2-D impedance spectroscopy to identify areas of biofilm growth on a CMOS biosensor microelectrode-array.

Methods: This paper presents the design and use of a novel multichannel impedance spectroscopy instrument to allow 2-D spatial and temporal evaluation of biofilm growth. The custom-designed circuits can provide a wide range of frequencies (1 Hz-100 kHz) to allow customization of impedance measurements, as the frequency of interest varies based on the type and state of biofilm under measurement.

View Article and Find Full Text PDF

Rates of cellular oxygen consumption (OCR) and extracellular acidification (ECAR) are widely used proxies for mitochondrial oxidative phosphorylation (OXPHOS) and glycolytic rate in cell metabolism studies. However, ECAR can result from both oxidative metabolism (carbonic acid formation) and glycolysis (lactate release), potentially leading to erroneous conclusions about metabolic substrate utilization. Co-measurement of extracellular glucose and lactate flux along with OCR and ECAR can improve the accuracy and provide better insight into cellular metabolic processes but is currently not feasible with any commercially available instrumentation.

View Article and Find Full Text PDF