Publications by authors named "Thomas Volkmer"

Most cyanobacteria use a single type of cyanophycin synthetase, CphA1, to synthesize the nitrogen-rich polymer cyanophycin. The genomes of many N2-fixing cyanobacteria contain an additional gene that encodes a second type of cyanophycin synthetase, CphA2. The potential function of this enzyme has been debated due to its reduced size and the lack of one of the two ATP-binding sites that are present in CphA1.

View Article and Find Full Text PDF

L-serine is one of the proteinogenic amino acids and participates in several essential processes in all organisms. In plants, the light-dependent photorespiratory and the light-independent phosphoserine pathways contribute to serine biosynthesis. In cyanobacteria, the light-dependent photorespiratory pathway for serine synthesis is well characterized, but the phosphoserine pathway has not been identified.

View Article and Find Full Text PDF

The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF all1371 encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

View Article and Find Full Text PDF

Despite a wide variety of biological functions, alpha-helical membrane proteins display a rather simple transmembrane architecture. Although not many high resolution structures of transmembrane proteins are available today, our understanding of membrane protein folding has emerged in the recent years. Now we begin to develop a basic understanding of the forces that guide folding and interaction of alpha-helical membrane proteins.

View Article and Find Full Text PDF

The cytochrome b(6)f complex consists of four large core subunits and an additional four low molecular weight subunits, the function of which is elusive thus far. Here we sought to determine whether small subunits PetG, PetL, and PetN are essential for a cyanobacterial cytochrome b(6)f complex. We found that only PetL is dispensable, whereas PetG and PetN appear to be essential.

View Article and Find Full Text PDF

To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.

View Article and Find Full Text PDF

Folding, assembly and stability of alpha-helical membrane proteins is still not very well understood. Several of these membrane proteins contain cofactors, which are essential for their function and which can be involved in protein assembly and/or stabilization. The effect of heme binding on the assembly and stability of the transmembrane b-type cytochrome b'559 was studied by fluorescence resonance energy transfer.

View Article and Find Full Text PDF

Despite some promising progress in the understanding of membrane protein folding and assembly, there is little experimental information regarding the thermodynamic stability of transmembrane helix interactions and even less on the stability of transmembrane helix-helix interactions in a biological membrane. Here we describe an approach that allows quantitative measurement of transmembrane helix interactions in a biological membrane, and calculation of changes in the interaction free energy resulting from substitution of single amino acids. Dimerization of several variants of the glycophorin A transmembrane domain are characterized and compared to the wild-type (wt) glycophorin A transmembrane helix dimerization.

View Article and Find Full Text PDF

To define the structural basis for cofactor binding to membrane proteins, we introduce a manageable model system, which allows us, for the first time, to study the influence of individual transmembrane helices and of single amino acid residues on the assembly of a transmembrane cytochrome. In vivo as well as in vitro analyses indicate central roles of single amino acid residues for either interaction of the transmembrane helices or for binding of the cofactor. The results clearly show that interaction of the PsbF transmembrane helix is independent from binding of the heme cofactor.

View Article and Find Full Text PDF

Many of the completely sequenced cyanobacterial genomes contain a gene family that encodes for putative Rieske iron-sulfur proteins. The Rieske protein is one of the large subunits of the cytochrome bc-type complexes involved in respiratory and photosynthetic electron transfer. In contrast to all other subunits of this complex that are encoded by single genes, the genome of the cyanobacterium Synechocystis PCC 6803 contains three petC genes, all encoding potential Rieske subunits.

View Article and Find Full Text PDF