Poly(2-alkyl-2-oxazoline)s (PAOx) have received increasing interest for biomedical applications. Therefore, it is of fundamental importance to gain an in-depth understanding of the biodistribution profile of PAOx. We report the biodistribution of poly(2-ethyl-2-oxazoline) (PEtOx) with a molar mass of 5 kDa radiolabeled with PET isotopes Zr and F.
View Article and Find Full Text PDFPoly(2-oxazoline)s are a promising class of polymers for biomedical applications and a versatile alternative to poly(ethylene glycol)s (PEG). In this work, the pharmacokinetic behavior of well defined (89)Zr-labeled poly(2-ethyl-2-oxazoline)s (PEtOx) was evaluated and compared to that of (89)Zr-labeled PEG, both with varying molar mass. Amine-terminated PEtOx of low dispersity in a molar mass range of 20 to 110kDa and PEG of 20 and 40kDa were functionalized with a desferrioxamine chelator and radiolabeled with (89)Zr.
View Article and Find Full Text PDFTo explore the hitherto successful derivatization of the α-carbon of fosmidomycin, a series of new α-substituted analogues was prepared. This was done by introduction of a heteroatom (N or O) in α-position to the phosphonate and using the resultant OH and NH₂ groups as a handle for appending a variety of substituents by means of several functional groups such as ether, amide, urea, and 1,4-triazole. The synthesized molecules, as a racemic mixture, were assayed for their EcDXR inhibitory potency.
View Article and Find Full Text PDFThe Burkholderia cepacia complex (BCC) is a group of 17 closely related opportunistic pathogens that are able to infect the respiratory tract of cystic fibrosis patients. BCC bacteria are intrinsically resistant to many antibiotics and are therefore difficult to eradicate. Fosmidomycin could be a new therapeutic agent to treat BCC infections as it inhibits 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in the non-mevalonate pathway essential in BCC bacteria for isoprenoid synthesis.
View Article and Find Full Text PDFThree alpha-halogenated analogues of 3-(acetylhydroxyamino)propylphosphonic acid (FR900098) have been synthesized from diethyl but-3-enylphosphonate using a previously described method for the alpha-halogenation of alkylphosphonates. These analogues were evaluated for antimalarial potential in vitro against Plasmodium falciparum and in vivo in the P. berghei mouse model.
View Article and Find Full Text PDFTo expand the structure-activity relationships of fosmidomycin and FR900098, two potent antimalarials interfering with the MEP-pathway, we decided to replace a methylene group in beta-position of the phosphonate moiety of these leads by an oxygen atom. beta-oxa-FR900098 (11) proved equally active as the parent compound. When applied to 4-[hydroxyl(methyl)amino]-4-oxobutyl phosphonic acid, featuring a hydroxamate instead of the retrohydroxamate moiety, a beta-oxa modification yielded a derivative (13) with superior activity against the Plasmodium falciparum 3D7 strain than fosmidomycin, while a gamma-oxa modification resulted in less active derivatives.
View Article and Find Full Text PDF