Only the neutral tetrafluorides of Ce, Pr, and Tb as well as the [LnF7 ](3-) anions of Dy and Nd, with the metal in the +IV oxidation state, have been previously reported. We report our attempts to extend the row of neutral lanthanide tetrafluorides through the reaction of laser-ablated metal atoms with fluorine and their stabilization and characterization by matrix-isolation IR spectroscopy. In addition to the above three tetrafluorides, we found two new tetrafluorides, (3) NdF4 and (7) DyF4 , both of which are in the +IV oxidation state, which extends this lanthanide oxidation state to two new metals.
View Article and Find Full Text PDFThe chemistry of the lanthanides is mostly dominated by compounds in the oxidation state +III. Only few compounds of Ce, Pr, and Tb are known with the metal in the +IV oxidation state. Removal of the last f-electron on praseodymium +IV would lead to a closed-shell system with formal oxidation state V.
View Article and Find Full Text PDFThe use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated.
View Article and Find Full Text PDFThe compounds H2ThSe and H2USe were synthesized by the reaction of laser-ablated actinide metal atoms with H2Se under cryogenic conditions following the procedures used to synthesize H2AnX (An = Th, U; X = O, S). The molecules were characterized by infrared spectra in an argon matrix with the aid of deuterium substitution and electronic structure calculations at the density functional theory level. The main products, H2ThSe and H2USe, are shown to have a highly polarized actinide-selenium triple bond, as found for H2AnS on the basis of electronic structure calculations.
View Article and Find Full Text PDFThe photolytic behavior of the thermochemically unstable xenon(VIII) oxide XeO4 was investigated by UV irradiation in noble-gas and F2 matrices. Photolysis of Xe(16) O4 or Xe(18) O4 in noble-gas matrices at 365 nm yielded XeO3 and a new xenon(VIII) oxide, namely, (η(2) -O2 )XeO3 , which, along with XeO4 , was characterized by matrix-isolation IR spectroscopy and quantum-chemical calculations. Calculations of the UV spectrum showed that the photodecomposition is induced by an n→σ* transition, but the nature of the excitation differs when different light sources are used.
View Article and Find Full Text PDFPolyfluoride anions have been investigated by matrix-isolation spectroscopy and quantum-chemical methods. For the first time the higher polyfluoride anion [F5 ](-) has been observed under cryogenic conditions in neon matrices at 850 cm(-1) . In addition, a new band for the Cs(+) [F3 ](-) complex in neon is reported.
View Article and Find Full Text PDFReactions of laser-ablated U atoms with HF produce HUF as the major product and UH and UF as minor products, which are identified from their argon and neon matrix infrared spectra. Our assignment of HUF is confirmed by the observation of DUF and close agreement with observed and calculated vibrational frequencies and deuterium shifts in the vibrational frequencies. Our previous observation of the UH diatomic molecule from argon matrix experiments with H2, HD, and D2 as reagents is confirmed through its present observation with HF and DF, and with recent higher level quantum chemical calculations.
View Article and Find Full Text PDFThe question of whether or not the chromium hexafluoride molecule has been synthesized and characterized has been widely discussed in the literature and cannot, in spite of many efforts, yet be answered beyond doubt. New matrix-isolation experiments can now show, together with state-of-the-art quantum-chemical calculations, that the compound previously isolated in inert gas matrixes, was CrF5 and not CrF6. New bands in the matrix IR spectra can be assigned to the Cr2F10 dimer, and furthermore evidence was found in the spectra for a photodissociation or reversible excitation of CrF5 under UV irradiation.
View Article and Find Full Text PDFThe perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) (X=H, F, Cl, Br, I) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12 H12 ](2-) and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2 ) yielded the corresponding radical anions [B12 X12 ](⋅-) (X=F, Cl, Br).
View Article and Find Full Text PDFLaser-ablated Th atoms react with F2 in condensing noble gases to give ThF4 as the major product. Weaker higher frequency infrared absorptions at 567.2, 564.
View Article and Find Full Text PDFReaction of the donor-stabilized silylene 1 with [Cr(CO)6], [Mo(CO)6], [W(CO)6], or [Fe(CO)5] leads to the formation of the transition-metal silylene complexes 2-5, which contain five-coordinate silicon(II) moieties with Si-M bonds (M = Cr, Mo, W, Fe). These compounds were characterized by NMR spectroscopic studies in the solid state and in solution and by crystal structure analyses. These experimental investigations were complemented by computational studies to gain insight into the bonding situation of 2-5.
View Article and Find Full Text PDFReactions of laser-ablated U atoms with HF and DF in condensing and solid rare gas produce HUF and DUF as the major new products based on close agreement between observed and calculated vibrational frequencies and deuterium shifts for U-H and U-F stretching modes at 1383 and 544 cm(-1), respectively.
View Article and Find Full Text PDF