Unraveling the biochemical and genetic alterations that control the aggregation of protein tau is crucial to understand the etiology of tau-related neurodegenerative disorders. We expressed wild type and six clinical frontotemporal dementia with parkinsonism (FTDP) mutants of human protein tau in wild-type yeast cells and cells lacking Mds1 or Pho85, the respective orthologues of the tau kinases GSK3β and cdk5. We compared tau phosphorylation with the levels of sarkosyl-insoluble tau (SinT), as a measure for tau aggregation.
View Article and Find Full Text PDFBudding yeast Saccharomyces cerevisiae has proven to be a valuable model organism for studying fundamental cellular processes across the eukaryotic kingdom including man. In this respect, complementation assays, in which the yeast protein is replaced by a homologous protein from another organism, have been very instructive. A newer trend is to use the yeast cell factory as a toolbox to understand cellular processes controlled by proteins for which the yeast lacks functional counterparts.
View Article and Find Full Text PDFPhosphorylation of Tau protein and binding to microtubules is complex in neurons and was therefore studied in the less complicated model of humanized yeast. Human Tau was readily phosphorylated at pathological epitopes, but in opposite directions regulated by kinases Mds1 and Pho85, orthologues of glycogen synthase kinase-3beta and cdk5, respectively (1). We isolated recombinant Tau-4R and mutant Tau-P301L from wild type, Delta mds1 and Delta pho85 yeast strains and measured binding to Taxol-stabilized mammalian microtubules in relation to their phosphorylation patterns.
View Article and Find Full Text PDFHyperphosphorylation and aggregation of protein tau are typical for neurodegenerative tauopathies, including Alzheimer's disease (AD). We demonstrate here that human tau expressed in yeast acquired pathological phosphoepitopes, assumed a pathological conformation, and formed aggregates. These processes were modulated by yeast kinases Mds1 and Pho85, orthologues of GSK-3beta and cdk5, respectively.
View Article and Find Full Text PDFA yeast model was generated to study the mechanisms and phenotypical repercussions of expression of alpha-synuclein as well as the coexpression of protein tau. The data show that aggregation of alpha-synuclein is a nucleation-elongation process initiated at the plasma membrane. Aggregation is consistently enhanced by dimethyl sulfoxide, which is known to increase the level of phospholipids and membranes in yeast cells.
View Article and Find Full Text PDF