IEEE Trans Neural Netw Learn Syst
July 2023
Numerical models based on physics represent the state of the art in Earth system modeling and comprise our best tools for generating insights and predictions. Despite rapid growth in computational power, the perceived need for higher model resolutions overwhelms the latest generation computers, reducing the ability of modelers to generate simulations for understanding parameter sensitivities and characterizing variability and uncertainty. Thus, surrogate models are often developed to capture the essential attributes of the full-blown numerical models.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
July 2023
Applications of satellite data in areas such as weather tracking and modeling, ecosystem monitoring, wildfire detection, and land-cover change are heavily dependent on the tradeoffs to spatial, spectral, and temporal resolutions of observations. In weather tracking, high-frequency temporal observations are critical and used to improve forecasts, study severe events, and extract atmospheric motion, among others. However, while the current generation of geostationary (GEO) satellites has hemispheric coverage at 10-15-min intervals, higher temporal frequency observations are ideal for studying mesoscale severe weather events.
View Article and Find Full Text PDF