Advanced gastrointestinal stromal tumors (GIST) are typically treated with tyrosine kinase inhibitors, and imatinib is the most commonly used standard of care in first line treatments. The use of this and other tyrosine kinase inhibitors is associated with objective tumor responses and prolongation of progression-free and overall survival, but the treatment of metastatic disease is non-curative due to the selection or acquisition of secondary mutations and the activation of alternative kinase signaling pathways, leading to resistance and disease progression after an initial response. The present preclinical study evaluated the potential use of the fibroblast growth factor receptor inhibitors infigratinib and dovitinib alone or in combination with the mitogen-activated protein kinase inhibitor binimetinib in mouse models of GIST with different sensitivity or resistance to imatinib.
View Article and Find Full Text PDFIntroduction: The study objective was to characterize the excretion and metabolic profile of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678. Prior animal and in vitro studies suggested three main elimination pathways: N-glucuronidation to M8; CYP(3A4) metabolism leading to circulating metabolites M5, M12, M19 and M37; and JNJ-53718678 biliary excretion. To gain insight into the relative contribution of JNJ-53718678 and M8 biliary excretion, duodenal fluid sampling was incorporated into this mass balance study.
View Article and Find Full Text PDFIn the majority of gastrointestinal stromal tumors (GIST), oncogenic signaling is driven by KIT mutations. Advanced GIST is treated with tyrosine kinase inhibitors (TKI) such as imatinib. Acquired resistance to TKI is mainly caused by secondary KIT mutations, but can also be attributed to a switch of KIT dependency to another receptor tyrosine kinase (RTK).
View Article and Find Full Text PDFWe evaluated the efficacy of CK6, a KIT monoclonal antibody, in a panel of human gastrointestinal stromal tumor (GIST) xenograft models. Nude mice were bilaterally transplanted with human GIST xenografts (four patient derived and two cell line derived), treated for 3 weeks, and grouped as follows: control (untreated); CK6 (40 mg/kg, 3× weekly); imatinib (50 mg/kg, twice daily); sunitinib (40 mg/kg, once daily); imatinib + CK6; sunitinib + CK6 (same doses and schedules as in the single-agent treatments). Tumor volume assessment, Western blot analysis, and histopathology were used for evaluation of efficacy.
View Article and Find Full Text PDFIntroduction: The rarity of dedifferentiated liposarcoma (DDLPS) and the lack of experimental DDLPS models limit the development of novel therapeutic strategies. Pazopanib (PAZ) is a tyrosine kinase inhibitor that is approved for the treatment of non-adipocytic advanced soft tissue sarcoma. The activity of this agent has not yet been properly explored in preclinical liposarcoma models nor in a randomized phase Ш clinical trial in this entity.
View Article and Find Full Text PDFIntroduction: The PI3K signaling pathway drives tumor cell proliferation and survival in gastrointestinal stromal tumor (GIST). We tested the in vivo efficacy of three PI3K inhibitors (PI3Ki) in patient-derived GIST xenograft models.
Experimental Design: One hundred and sixty-eight nude mice were grafted with human GIST carrying diverse KIT genotypes and PTEN genomic status.
Clin Sarcoma Res
August 2014
Background: Acquired resistance to tyrosine kinase inhibitors (TKIs) in gastrointestinal stromal tumours (GISTs) is most commonly caused by secondary KIT or PDGFRA mutations. In this study we characterize a newly established GIST xenograft model, UZLX-GIST9, and evaluate the in vivo response of the model to standard TKIs (imatinib, sunitinib, and regorafenib).
Methods: Tumour fragments from a metastatic lesion of a GIST patient clinically progressing after treatment with imatinib, sunitinib and regorafenib were engrafted in a nude, immunodeficient mouse.
Insufficiency of phosphatase and tensin homolog (PTEN) occurs in numerous tumor types and has been implicated as a resistance mechanism to receptor tyrosine kinase-targeted therapies in human cancer. In this study, we have performed a comprehensive molecular and immunohistochemical characterization of PTEN in 58 imatinib-naïve and 54 imatinib-treated gastrointestinal stromal tumors (GISTs). The findings were correlated with clinicopathological data.
View Article and Find Full Text PDFPurpose: Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA).
Experimental Design: Nude mice (n = 136) were grafted bilaterally with human GIST carrying diverse KIT mutations.
The majority of gastrointestinal stromal tumors (GIST) are characterized by activating mutations of KIT, an HSP90 client protein. Further secondary resistance mutations within KIT limit clinical responses to tyrosine kinase inhibitors, such as imatinib. The dependence of KIT and its mutated forms on HSP90 suggests that HSP90 inhibition might be a valuable treatment option for GIST, which would be equally effective on imatinib-sensitive and -resistant clones.
View Article and Find Full Text PDFPurpose: KIT activity is crucial for gastrointestinal stromal tumors (GIST). Imatinib (IMA) and sunitinib (SUN) are very effective KIT-inhibitors in patients with advanced GIST but have no curative potential. We evaluated the efficacy of the novel HSP90 inhibitor IPI-493 alone, or in combination with IMA or SUN in GIST xenografts with KIT mutations.
View Article and Find Full Text PDF