Publications by authors named "Thomas Vaissiere"

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders. The Bezold-Jarisch reflex (BJR), first described in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown.

View Article and Find Full Text PDF

Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, , in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception.

View Article and Find Full Text PDF

A significant proportion of autism risk genes regulate synapse function, including plasticity, which is believed to contribute to behavioral abnormalities. However, it remains unclear how impaired synapse plasticity contributes to network-level processes linked to adaptive behaviors, such as experience-dependent ensemble plasticity. We found that , a major autism risk gene, promoted measures of experience-dependent excitatory synapse strengthening in the mouse cortex, including spike-timing-dependent glutamatergic synaptic potentiation and presynaptic bouton formation.

View Article and Find Full Text PDF

Cytokinesis is the last step of mitotic cell division that separates the cytoplasm of dividing cells. Small molecule inhibitors targeting either the elements of the regulatory pathways controlling cytokinesis, or the terminal effectors have been of interest as potential drug candidates for the treatment of various diseases. Here we present a detailed protocol for a cell-based cytokinesis assay that can be used for the discovery of novel cytokinesis inhibitors.

View Article and Find Full Text PDF

It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for haploinsufficiency.

View Article and Find Full Text PDF

In addition to cognitive impairments, neurodevelopmental disorders often result in sensory processing deficits. However, the biological mechanisms that underlie impaired sensory processing associated with neurodevelopmental disorders are generally understudied and poorly understood. We found that SYNGAP1 haploinsufficiency in humans, which causes a sporadic neurodevelopmental disorder defined by cognitive impairment, autistic features, and epilepsy, also leads to deficits in tactile-related sensory processing.

View Article and Find Full Text PDF

There is a pressing need to improve approaches for drug discovery related to neuropsychiatric disorders (NSDs). Therapeutic discovery in neuropsychiatric disorders would benefit from screening assays that can measure changes in complex phenotypes linked to disease mechanisms. However, traditional assays that track complex neuronal phenotypes, such as neuronal connectivity, exhibit poor scalability and are not compatible with high-throughput screening (HTS) procedures.

View Article and Find Full Text PDF

SYNGAP1 loss-of-function variants are causally associated with intellectual disability, severe epilepsy, autism spectrum disorder and schizophrenia. While there are hundreds of genetic risk factors for neurodevelopmental disorders (NDDs), this gene is somewhat unique because of the frequency and penetrance of loss-of-function variants found in patients combined with the range of brain disorders associated with SYNGAP1 pathogenicity. These clinical findings indicate that SYNGAP1 regulates fundamental neurodevelopmental processes that are necessary for brain development.

View Article and Find Full Text PDF

In the version of this article initially published online, Daniel Fürth was not listed as a corresponding author. The error has been corrected in the print, PDF and HTML versions of this article.

View Article and Find Full Text PDF

To deconstruct the architecture and function of brain circuits, it is necessary to generate maps of neuronal connectivity and activity on a whole-brain scale. New methods now enable large-scale mapping of the mouse brain at cellular and subcellular resolution. We developed a framework to automatically annotate, analyze, visualize and easily share whole-brain data at cellular resolution, based on a scale-invariant, interactive mouse brain atlas.

View Article and Find Full Text PDF

Our unique collection of memories determines our individuality and shapes our future interactions with the world. Remarkable advances into the neurobiological basis of memory have identified key epigenetic mechanisms that support the stability of memory. Various forms of epigenetic regulation at the levels of DNA methylation, histone modification, and non-coding RNAs (ncRNAs) can modulate transcriptional and translational events required for memory processes.

View Article and Find Full Text PDF

Background: Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders.

Methods: A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development.

View Article and Find Full Text PDF

Background: Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder by triggering craving. The nucleus accumbens (NAc) is essential to these drug-associated memories, but underlying mechanisms are poorly understood. Posttranslational chromatin modifications, such as histone methylation, modulate gene transcription; thus, we investigated the role of the associated epigenetic modifiers in METH-associated memory.

View Article and Find Full Text PDF

Chromatin states are believed to play a key role in distinct patterns of gene expression essential for self-renewal and pluripotency of embryonic stem cells (ESCs); however, the genes governing the establishment and propagation of the chromatin signature characteristic of pluripotent cells are poorly understood. Here, we show that conditional deletion of the histone acetyltransferase cofactor Trrap in mouse ESCs triggers unscheduled differentiation associated with loss of histone acetylation, condensation of chromatin into distinct foci (heterochromatization), and uncoupling of H3K4 dimethylation and H3K27 trimethylation. Trrap loss results in downregulation of stemness master genes Nanog, Oct4, and Sox2 and marked upregulation of specific differentiation markers from the three germ layers.

View Article and Find Full Text PDF

Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers.

View Article and Find Full Text PDF

Epigenetic mechanisms have emerged as a central process in learning and memory. Histone modifications and DNA methy-lation are epigenetic events that can mediate gene transcription. Interesting features of these epigenetic changes are their transient and long lasting potential.

View Article and Find Full Text PDF

Chromatin modifications/remodeling are important mechanisms by which cells regulate various functions through providing accessibility to chromatin DNA. Recent studies implicated INO80, a conserved chromatin-remodeling complex, in the process of DNA repair. However, the precise underlying mechanism by which this complex mediates repair in mammalian cells remains enigmatic.

View Article and Find Full Text PDF

The DOK1 gene is a putative tumour suppressor gene located on the human chromosome 2p13 which is frequently rearranged in leukaemia and other human tumours. We previously reported that the DOK1 gene can be mutated and its expression down-regulated in human malignancies. However, the mechanism underlying DOK1 silencing remains largely unknown.

View Article and Find Full Text PDF

Although epidemiological studies support the role of environment in a wide range of human cancers, the precise mechanisms by which environmental exposures promote cancer development and progression remain poorly understood. Environmental factors have been proposed to promote the development of malignancies by eliciting epigenetic changes; however, it is only with recent advances in epigenetics and epigenomics that target genes and the mechanisms underlying environmental influences are beginning to be elucidated. Because epigenetic mechanisms may function as an interface between environmental factors and the genome, deregulation of the epigenome by environmental stressors is likely to disrupt different cellular processes and contribute to cancer risk.

View Article and Find Full Text PDF

Constitutional epimutation is one of the causes for MLH1 gene inactivation associated with hereditary non-polyposis colon cancer (HNPCC) syndrome. Here we investigate MLH1 promoter hypermethylation in 110 sporadic early-onset colorectal cancer patients. Variable levels of hypermethylation were detected in 55 patients (50%).

View Article and Find Full Text PDF

Background & Aims: Hepatocellular carcinoma (HCC) is one of the most frequent human cancers and a major cause of cancer-related death worldwide. The major risk factors for developing HCC are infection by hepatitis B virus (HBV) and hepatitis C virus (HCV), chronic alcoholism, and aflatoxins; however, critical gene targets remain largely unknown. Herein, we sought to establish DNA methylation patterns in HCC and corresponding cirrhotic tissues and to identify DNA methylation changes associated with major risk factors.

View Article and Find Full Text PDF

Aberrant DNA methylation is a major epigenetic mechanism of gene silencing in a wide range of human cancers. Previous studies on DNA methylation typically used paired tumor and normal-appearing surrounding tissues from cancer-bearing individuals. However, genomic DNA isolated from surrogate tissues such as blood cells represents an attractive material that can be exploited in the discovery of biomarkers of exposure and tumorigenesis.

View Article and Find Full Text PDF

Quantitative and reliable estimation of DNA methylation levels for multiple genomic regions pose a major challenge where starting DNA is available in very low quantity. Here we review major advances in the development of techniques for quantitative detection of DNA methylation in minute amount of DNA and describe a detailed protocol for quantitative Methylation Analysis of Minute DNA amounts after whole Bisulfitome Amplification (qMAMBA), a combination of techniques that allows quantitative and sensitive detection of DNA methylation at multiple CpG sites and for multiple gene assays. Recently we successfully used this technique to quantitatively detect DNA methylation for a set of cancer-related genes in lung cancer patient plasma samples [18].

View Article and Find Full Text PDF

Nicotinic acetylcholine receptor (nAChR) genes form a highly conserved gene cluster at the lung cancer susceptibility locus 15q25.1. In this study, we show that the CHRNalpha3 gene encoding the nAChRalpha3 subunit is a frequent target of aberrant DNA hypermethylation and silencing in lung cancer, whereas the adjacent CHRNbeta4 and CHRNalpha5 genes exhibit moderate and no methylation, respectively.

View Article and Find Full Text PDF