Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myositis (IIM) are autoimmune diseases managed with long-term immunosuppressive therapies. Hu19-CD828Z, a fully human anti-CD19 chimeric antigen receptor (CAR) with a CD28 costimulatory domain, is engineered to potently deplete B-cells. In this study, we manufactured Hu19-CD828Z CAR T-cells from peripheral blood of SLE, IIM, and SSc patients and healthy donors (HDs).
View Article and Find Full Text PDFThe magnitude of CAR T cell expansion has been associated with clinical efficacy. Although cytokines can augment CAR T cell proliferation, systemically administered cytokines can result in toxicities. To gain the benefits of cytokine signaling while mitigating toxicities, we designed constitutively active synthetic cytokine receptor chimeras (constitutive Turbodomains) that signal in a CAR T cell-specific manner.
View Article and Find Full Text PDFPurpose: Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Delta-like ligand 3 (DLL3) is highly expressed on SCLC and several other types of neuroendocrine cancers, with limited normal tissue RNA expression in brain, pituitary, and testis, making it a promising CAR T-cell target for SCLC and other solid tumor indications.
Experimental Design: A large panel of anti-DLL3 scFv-based CARs were characterized for both in vitro and in vivo activity.
Unlabelled: CD70 is highly expressed in renal cell carcinoma (RCC), with limited expression in normal tissue, making it an attractive CAR T target for an immunogenic solid tumor indication. Here we generated and characterized a panel of anti-CD70 single-chain fragment variable (scFv)-based CAR T cells. Despite the expression of CD70 on T cells, production of CAR T cells from a subset of scFvs with potent in vitro activity was achieved.
View Article and Find Full Text PDFAntibody-based therapeutics have experienced a rapid growth in recent years and are now utilized in various modalities spanning from conventional antibodies, antibody-drug conjugates, bispecific antibodies to chimeric antigen receptor (CAR) T cells. Many next generation antibody therapeutics achieve enhanced potency but often increase the risk of adverse events. Antibody scaffolds capable of exhibiting inducible affinities could reduce the risk of adverse events by enabling a transient suspension of antibody activity.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe restricted expression pattern of B-cell maturation antigen (BCMA) makes it an ideal tumor-associated antigen (TAA) for the treatment of myeloma. BCMA has been targeted by both CD3 bispecific antibody and antibody-drug conjugate (ADC) modalities, but a true comparison of modalities has yet to be performed. Here we utilized a single BCMA antibody to develop and characterize both a CD3 bispecific and 2 ADC formats (cleavable and noncleavable) and compared activity both and with the aim of generating an optimal therapeutic.
View Article and Find Full Text PDFHuman CLDN18.2 is highly expressed in a significant proportion of gastric and pancreatic adenocarcinomas, while normal tissue expression is limited to the epithelium of the stomach. The restricted expression makes it a potential drug target for the treatment of gastric and pancreatic adenocarcinoma, as evidenced by efforts to target CLDN18.
View Article and Find Full Text PDFClinical success of autologous CD19-directed chimeric antigen receptor T cells (CAR Ts) in acute lymphoblastic leukemia and non-Hodgkin lymphoma suggests that CAR Ts may be a promising therapy for hematological malignancies, including multiple myeloma. However, autologous CAR T therapies have limitations that may impact clinical use, including lengthy vein-to-vein time and manufacturing constraints. Allogeneic CAR T (AlloCAR T) therapies may overcome these innate limitations of autologous CAR T therapies.
View Article and Find Full Text PDFMonoclonal antibodies are the largest class of therapeutic proteins due in part to their ability to bind an antigen with a high degree of affinity and specificity. A precise determination of their epitope is important for gaining insights into their therapeutic mechanism of action and to help differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of multiple antibodies in parallel over the course of just several weeks.
View Article and Find Full Text PDFPurpose: A large body of evidence supports a central role for complement activation in the pathobiology of age-related macular degeneration (AMD), including plasma complement component 5a (C5a). Interestingly, C5a is a chemotactic agent for monocytes, a cell type also shown to contribute to AMD. However, the role monocytes play in the pathogenesis of "dry" AMD and the pharmacologic potential of targeting C5a to regulate these cells are unclear.
View Article and Find Full Text PDFThe commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly.
View Article and Find Full Text PDFThe ability of antibodies to bind an antigen with a high degree of affinity and specificity has led them to become the largest and fastest growing class of therapeutic proteins. Clearly identifying the epitope at which they bind their cognate antigen provides insight into their mechanism of action and helps differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of a panel of antibodies in parallel over the course of several weeks.
View Article and Find Full Text PDFHere, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs). In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes.
View Article and Find Full Text PDFEven though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (K(D)) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV.
View Article and Find Full Text PDFWe present a method for synthetic antibody library generation that combines the use of high-throughput immune repertoire analysis and a novel synthetic technology. The library design recapitulates positional amino acid frequencies observed in natural antibody repertoires. V-segment diversity in four heavy (V(H)) and two kappa (V(κ)) germlines was introduced based on the analysis of somatically hypermutated donor-derived repertoires.
View Article and Find Full Text PDFPhage display of antibody libraries is a powerful tool for antibody discovery and evolution. Recombinant antibodies have been displayed on phage particles as scFvs or Fabs, and more recently as bivalent F(ab')(2). We recently developed a technology (E-clonal) for screening of combinatorial IgG libraries using bacterial periplasmic display and selection by fluorescence-activated cell sorting (FACS) [Mazor Y et al.
View Article and Find Full Text PDFThe ability to build and control complex biological systems is greatly enhanced by the generation of related parts with varying strengths. In this way, various parts can be strung together and the connectivity and expression levels can be matched for the desired system performance. Engineered gene circuits, both in vivo and in vitro, often utilize the T7 RNA polymerase in tandem with the T7 promoter for transcription.
View Article and Find Full Text PDFWe have developed a technology for the facile isolation of full-length IgG antibodies with desired specificity from combinatorial libraries expressed in Escherichia coli. Full-length heavy and light chains are expressed from a bicistronic operon and are secreted into the periplasm where they assemble into aglycosylated IgGs that are fully functional for antigen binding. Expression of an inner membrane-tethered Fc-binding protein is used to capture the IgG molecules and anchor them to the cell.
View Article and Find Full Text PDFHere we describe a protocol for the selection of full-length IgG antibodies from repertoires displayed on Escherichia coli. In the method described here, full-length heavy and light chains are assembled in the periplasm into aglycosylated IgGs that are fully functional for antigen binding. Expression of an inner membrane-tethered Fc-binding protein is used to capture the IgG molecules and anchor them to the cell.
View Article and Find Full Text PDFProteins destined for export across the cytoplasmic membrane via the post-translational Sec-dependent route have to be maintained in a largely unfolded state within the cytoplasm. In sharp contrast, only proteins that have folded into a native-like state within the cytoplasm are competent for export via the twin arginine translocation (Tat) pathway. Proteins that contain disulfide bonds, such as scFv antibody fragments, can be translocated via Tat only when expressed in Escherichia coli trxB gor mutant strains having an oxidizing cytoplasm.
View Article and Find Full Text PDFWe describe facile isolation of full-length IgG antibodies from combinatorial libraries expressed in E. coli. Full-length heavy and light chains are secreted into the periplasm, where they assemble into aglycosylated IgGs that are captured by an Fc-binding protein that is tethered to the inner membrane.
View Article and Find Full Text PDF