Importance: An automated, accurate method is needed for unbiased assessment quantifying accrual of joint space narrowing and erosions on radiographic images of the hands and wrists, and feet for clinical trials, monitoring of joint damage over time, assisting rheumatologists with treatment decisions. Such a method has the potential to be directly integrated into electronic health records.
Objectives: To design and implement an international crowdsourcing competition to catalyze the development of machine learning methods to quantify radiographic damage in rheumatoid arthritis (RA).
Unlabelled: The American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) is an international pan-cancer registry with the goal to inform cancer research and clinical care worldwide. Founded in late 2015, the milestone GENIE 9.1-public release contains data from >110,000 tumors from >100,000 people treated at 19 cancer centers from the United States, Canada, the United Kingdom, France, the Netherlands, and Spain.
View Article and Find Full Text PDF