Publications by authors named "Thomas V Karathanos"

Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States. Familial adenomatous polyposis (FAP) is a hereditary syndrome that raises the risk of developing CRC, with total colectomy as the only effective prevention. Even though FAP is rare (0.

View Article and Find Full Text PDF

Familial adenomatous polyposis (FAP) is a genetic disease causing hundreds of premalignant polyps in affected persons and is an ideal model to study transitions of early precancer states to colorectal cancer (CRC). We performed deep multiomic profiling of 93 samples, including normal mucosa, benign polyps and dysplastic polyps, from six persons with FAP. Transcriptomic, proteomic, metabolomic and lipidomic analyses revealed a dynamic choreography of thousands of molecular and cellular events that occur during precancerous transitions toward cancer formation.

View Article and Find Full Text PDF

Although three-dimensional (3D) genome architecture is crucial for gene regulation, its role in disease remains elusive. We traced the evolution and malignant transformation of colorectal cancer (CRC) by generating high-resolution chromatin conformation maps of 33 colon samples spanning different stages of early neoplastic growth in persons with familial adenomatous polyposis (FAP). Our analysis revealed a substantial progressive loss of genome-wide cis-regulatory connectivity at early malignancy stages, correlating with nonlinear gene regulation effects.

View Article and Find Full Text PDF

Optogenetic defibrillation of hearts expressing light-sensitive cation channels (e.g., ChR2) has been proposed as an alternative to conventional electrotherapy.

View Article and Find Full Text PDF

Cardiac optogenetics is an emergent research area involving the delivery of light-sensitive proteins (opsins) to excitable heart tissue to enable optical modulation of cardiac electrical function. Optogenetic stimulation has many noteworthy advantages over conventional electrical methods, including selective electrophysiological modulation in specifically targeted cell subpopulations, high-resolution spatiotemporal control via patterned illumination, and use of different opsins to elicit inward or outward transmembrane current. This review summarizes developments achieved since the inception of cardiac optogenetics research, which has spanned nearly a decade.

View Article and Find Full Text PDF

Key Points: Optogenetics has emerged as a potential alternative to electrotherapy for treating heart rhythm disorders, but its applicability for terminating atrial arrhythmias remains largely unexplored. We used computational models reconstructed from clinical MRI scans of fibrotic patient atria to explore the feasibility of optogenetic termination of atrial tachycardia (AT), comparing two different illumination strategies: distributed vs. targeted.

View Article and Find Full Text PDF

Plakophilin-2 (PKP2) is a component of the desmosome and known for its role in cell-cell adhesion. Mutations in human PKP2 associate with a life-threatening arrhythmogenic cardiomyopathy, often of right ventricular predominance. Here, we use a range of state-of-the-art methods and a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mouse to demonstrate that in addition to its role in cell adhesion, PKP2 is necessary to maintain transcription of genes that control intracellular calcium cycling.

View Article and Find Full Text PDF

Light has long been used to image the heart, but now it can be used to modulate its electrophysiological function. Imaging modalities and techniques have long constituted an indispensable part of arrhythmia research and treatment. Recently, advances in the fields of optogenetics and photodynamic therapy have provided scientists with more effective approaches for probing, studying and potentially devising new treatments for cardiac arrhythmias.

View Article and Find Full Text PDF

Ventricular arrhythmias are among the most severe complications of heart disease and can result in sudden cardiac death. Patients at risk currently receive implantable defibrillators that deliver electrical shocks to terminate arrhythmias on demand. However, strong electrical shocks can damage the heart and cause severe pain.

View Article and Find Full Text PDF

Key Points: Optogenetics-based defibrillation, a theoretical alternative to electrotherapy, involves expression of light-sensitive ion channels in the heart (via gene or cell therapy) and illumination of the cardiac surfaces (via implanted LED arrays) to elicit light-induced activations. We used a biophysically detailed human ventricular model to determine whether such a therapy could terminate fibrillation (VF) and identify which combinations of light-sensitive ion channel properties and illumination configurations would be effective. Defibrillation was successful when a large proportion (> 16.

View Article and Find Full Text PDF

Cardiac optogenetics is emerging as an exciting new potential avenue to enable spatiotemporally precise control of excitable cells and tissue in the heart with low-energy optical stimuli. This approach involves the expression of exogenous light-sensitive proteins (opsins) in target heart tissue via viral gene or cell delivery. Preliminary experiments in optogenetically-modified cells, tissue, and organisms have made great strides towards demonstrating the feasibility of basic applications, including the use of light stimuli to pace or disrupt reentrant activity.

View Article and Find Full Text PDF

Optogenetics is an exciting new technology in which viral gene or cell delivery is used to inscribe light sensitivity in excitable tissue to enable optical control of bioelectric behavior. Initial progress in the fledgling domain of cardiac optogenetics has included in vitro expression of various light-sensitive proteins in cell monolayers and transgenic animals to demonstrate an array of potentially useful applications, including light-based pacing, silencing of spontaneous activity, and spiral wave termination. In parallel to these developments, the cardiac modeling community has developed a versatile computational framework capable of realistically simulating optogenetics in biophysically detailed, patient-specific representations of the human heart, enabling the exploration of potential clinical applications in a predictive virtual platform.

View Article and Find Full Text PDF

Aims: Diseases that abbreviate the cardiac action potential (AP) by increasing the strength of repolarizing transmembrane currents are highly arrhythmogenic. It has been proposed that optogenetic tools could be used to restore normal AP duration (APD) in the heart under such disease conditions. This study aims to evaluate the efficacy of an optogenetic treatment modality for prolonging pathologically shortened APs in a detailed computational model of short QT syndrome (SQTS) in the human atria, and compare it to drug treatment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: