Publications by authors named "Thomas V Bugge"

In the operation of biological wastewater treatment processes, fast sludge settling during liquid-solids disengagement is preferred as it affects effluent quality, treatment efficiency and plant operation economy. An important property of fast settling biological sludge is the ability to spontaneously form big and dense flocs (flocculation) that readily separates from water. Therefore, there had been much research to study the conditions that promote biological sludge flocculation.

View Article and Find Full Text PDF

A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter.

View Article and Find Full Text PDF

The formation, composition and characteristics of soluble microbial products (SMPs) were investigated in a novel system which coupled a sequencing batch reactor with a cake filtration system. Both suspended solids (SS) and turbidity were significantly removed, resulting in effluent SS of 0.12 mg L and turbidity of 0.

View Article and Find Full Text PDF

In the conventional activated sludge process, a number of important parameters determining the efficiency of settling and dewatering are often linked to specific groups of bacteria in the sludge--namely floc size, residual turbidity, shear sensitivity and composition of extracellular polymeric substances (EPS). In membrane bioreactors (MBRs) the nature of solids separation at the membrane has much in common with sludge dewaterability but less is known about the effect of specific microbial groups on the sludge characteristics that affect this process. In this study, six full-scale MBR plants were investigated to identify correlations between sludge filterability, sludge characteristics, and microbial community structure.

View Article and Find Full Text PDF

Fouling is inevitable in membrane bioreactors (MBRs) due to the complex nature of activated sludge, which contains a broad variety of potential foulants. Filter cakes that build up from sludge particles are traditionally highly compressible due to both the deformation of the individual sludge particles and the rearrangement of these particles in the cake. However, this phenomenon has been little examined in studies of fouling mechanisms in MBR systems.

View Article and Find Full Text PDF