Publications by authors named "Thomas Unterthiner"

Deep learning is currently the most successful machine learning technique in a wide range of application areas and has recently been applied successfully in drug discovery research to predict potential drug targets and to screen for active molecules. However, due to (1) the lack of large-scale studies, (2) the compound series bias that is characteristic of drug discovery datasets and (3) the hyperparameter selection bias that comes with the high number of potential deep learning architectures, it remains unclear whether deep learning can indeed outperform existing computational methods in drug discovery tasks. We therefore assessed the performance of several deep learning methods on a large-scale drug discovery dataset and compared the results with those of other machine learning and target prediction methods.

View Article and Find Full Text PDF

The new wave of successful generative models in machine learning has increased the interest in deep learning driven de novo drug design. However, method comparison is difficult because of various flaws of the currently employed evaluation metrics. We propose an evaluation metric for generative models called Fréchet ChemNet distance (FCD).

View Article and Find Full Text PDF

Motivation: Biclustering has become a major tool for analyzing large datasets given as matrix of samples times features and has been successfully applied in life sciences and e-commerce for drug design and recommender systems, respectively. actor nalysis for cluster cquisition (FABIA), one of the most successful biclustering methods, is a generative model that represents each bicluster by two sparse membership vectors: one for the samples and one for the features. However, FABIA is restricted to about 20 code units because of the high computational complexity of computing the posterior.

View Article and Find Full Text PDF

Unlabelled: We have developed Rchempp, a web service that identifies structurally similar compounds (structural analogs) in large-scale molecule databases. The service allows compounds to be queried in the widely used ChEMBL, DrugBank and the Connectivity Map databases. Rchemcpp utilizes the best performing similarity functions, i.

View Article and Find Full Text PDF

Detection of differential expression in RNA-Seq data is currently limited to studies in which two or more sample conditions are known a priori. However, these biological conditions are typically unknown in cohort, cross-sectional and nonrandomized controlled studies such as the HapMap, the ENCODE or the 1000 Genomes project. We present DEXUS for detecting differential expression in RNA-Seq data for which the sample conditions are unknown.

View Article and Find Full Text PDF

Background: Methods of determining whether or not any particular HIV-1 sequence stems - completely or in part - from some unknown HIV-1 subtype are important for the design of vaccines and molecular detection systems, as well as for epidemiological monitoring. Nevertheless, a single algorithm only, the Branching Index (BI), has been developed for this task so far. Moving along the genome of a query sequence in a sliding window, the BI computes a ratio quantifying how closely the query sequence clusters with a subtype clade.

View Article and Find Full Text PDF