The more frequent and intense occurrence of heat waves is a challenge for arthropods because their unpredictable incidence requires fast adaptations by the exposed individuals. Phenotypic plasticity within and across generations might be a solution to cope with the detrimental effects of heat waves, especially for fast-developing, small arthropods with limited dispersal abilities. Therefore, we studied whether severe heat may affect the reproduction of a pest species, the spider mite , and its counterpart, the predatory mite .
View Article and Find Full Text PDFThe thermal history of arthropod predators and their prey may affect their reproductive performance during heat waves. Thus, a matching juvenile and adult environment should be beneficial as it enables the individuals to acclimate to extreme conditions. Prey fecundity, however, is also affected by a second stressor, namely predation risk.
View Article and Find Full Text PDFTheoretically, parents can adjust vital offspring traits to the irregular and rapid occurrence of heat waves via developmental plasticity. However, the direction and strength of such trait modifications are often species-specific. Here, we investigated within-generational plasticity (WGP) and trans-generational plasticity (TGP) effects induced by heat waves during the offspring development of the predator and its herbivorous prey, the spider mite to assess plastic developmental modifications.
View Article and Find Full Text PDFBackground: Climate warming is considered to affect the characteristics of heat waves by increasing their duration, frequency and intensity, which can have dramatic consequences for ectothermic arthropods. However, arthropods may respond to heat waves via plastic modifications, which could differently affect a predator and its prey. We examined this assumption using prominent counterparts in biological control, the predatory mite Phytoseiulus persimilis and its prey, the spider mite Tetranychus urticae.
View Article and Find Full Text PDF