Publications by authors named "Thomas Tschoellitsch"

Background: Intensive care units (ICUs) harbor the sickest patients with the utmost needs of medical care. Discharge from ICU needs to consider the reason for admission and stability after ICU care. Organ dysfunction or instability after ICU discharge constitute potentially life-threatening situations for patients.

View Article and Find Full Text PDF

Critical illness is an exquisitely time-sensitive condition and follows a disease continuum, which always starts before admission to the intensive care unit (ICU), in the majority of cases even before hospital admission. Reflecting the common practice in many healthcare systems that critical care is mainly provided in the confined areas of an ICU, any delay in ICU admission of critically ill patients is associated with increased morbidity and mortality. However, if appropriate critical care interventions are provided before ICU admission, this association is not observed.

View Article and Find Full Text PDF

Background: Transfusion of packed red blood cells (pRBCs) is still associated with risks. This study aims to determine whether renal function deterioration in the context of individual transfusions in individual patients can be predicted using machine learning. Recipient and donor characteristics linked to increased risk are identified.

View Article and Find Full Text PDF

Aims: Patient admission is a decision relying on sparsely available data. This study aims to provide prediction models for discharge versus admission for ward observation or intensive care, and 30 day-mortality for patients triaged with the Manchester Triage System.

Methods: This is a single-centre, observational, retrospective cohort study from data within ten minutes of patient presentation at the interdisciplinary emergency department of the Kepler University Hospital, Linz, Austria.

View Article and Find Full Text PDF

Background and importance Guidelines recommend that hospital emergency teams locally validate criteria for termination of cardiopulmonary resuscitation in patients with in-hospital cardiac arrest (IHCA). Objective To determine the value of a machine learning algorithm to predict failure to achieve return of spontaneous circulation (ROSC) and unfavourable functional outcome from IHCA using only data readily available at emergency team arrival. Design Retrospective cohort study.

View Article and Find Full Text PDF

The first clinical impression of emergency patients conveys a myriad of information that has been incompletely elucidated. In this prospective, observational study, the value of the first clinical impression, assessed by 18 observations, to predict the need for timely medical attention, the need for hospital admission, and in-hospital mortality in 1506 adult patients presenting to the triage desk of an emergency department was determined. Machine learning models were used for statistical analysis.

View Article and Find Full Text PDF

Electronic health records (EHRs) have been successfully used in data science and machine learning projects. However, most of these data are collected for clinical use rather than for retrospective analysis. This means that researchers typically face many different issues when attempting to access and prepare the data for secondary use.

View Article and Find Full Text PDF

There have been several attempts to quantify the diagnostic distortion caused by algorithms that perform low-dimensional electrocardiogram (ECG) representation. However, there is no universally accepted quantitative measure that allows the diagnostic distortion arising from denoising, compression, and ECG beat representation algorithms to be determined. Hence, the main objective of this work was to develop a framework to enable biomedical engineers to efficiently and reliably assess diagnostic distortion resulting from ECG processing algorithms.

View Article and Find Full Text PDF

Machine learning (ML) and artificial intelligence (AI) are widely used in many different fields of modern medicine. This narrative review gives, in the first part, a brief overview of the methods of ML and AI used in patient blood management (PBM) and, in the second part, aims at describing which fields have been analyzed using these methods so far. A total of 442 articles were identified by a literature search, and 47 of them were judged as qualified articles that applied ML and AI techniques in PBM.

View Article and Find Full Text PDF

Background: Massive perioperative allogeneic blood transfusion, that is, perioperative transfusion of more than 10 units of packed red blood cells (pRBC), is one of the main contributors to perioperative morbidity and mortality in cardiac surgery. Prediction of perioperative blood transfusion might enable preemptive treatment strategies to reduce risk and improve patient outcomes while reducing resource utilisation. We, therefore, investigated the precision of five different machine learning algorithms to predict the occurrence of massive perioperative allogeneic blood transfusion in cardiac surgery at our centre.

View Article and Find Full Text PDF

Many previous studies claim to have developed machine learning models that diagnose COVID-19 from blood tests. However, we hypothesize that changes in the underlying distribution of the data, so called domain shifts, affect the predictive performance and reliability and are a reason for the failure of such machine learning models in clinical application. Domain shifts can be caused, e.

View Article and Find Full Text PDF

Objectives: The ability to predict in-hospital mortality from data available at hospital admission would identify patients at risk and thereby assist hospital-wide patient safety initiatives. Our aim was to use modern machine learning tools to predict in-hospital mortality from standardized data sets available at hospital admission.

Methods: This was a retrospective, observational study in 3 adult tertiary care hospitals in Western Australia between January 2008 and June 2017.

View Article and Find Full Text PDF

Background: In December 2019, the new virus infection coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. Simple clinical risk scores may improve the management of COVID-19 patients. Therefore, the aim of this pilot study was to evaluate the quick Sequential Organ Failure Assessment (qSOFA) score, which is well established for other diseases, as an early risk assessment tool predicting a severe course of COVID-19.

View Article and Find Full Text PDF

Background: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates.

View Article and Find Full Text PDF

Aims: COVID-19, a respiratory viral disease causing severe pneumonia, also affects the heart and other organs. Whether its cardiac involvement is a specific feature consisting of myocarditis, or simply due to microvascular injury and systemic inflammation, is yet unclear and presently debated. Because myocardial injury is also common in other kinds of pneumonias, we investigated and compared such occurrence in severe pneumonias due to COVID-19 and other causes.

View Article and Find Full Text PDF

Objective: The diagnosis of COVID-19 is based on the detection of SARS-CoV-2 in respiratory secretions, blood, or stool. Currently, reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to test for SARS-CoV-2.

Methods: In this retrospective cohort analysis, we evaluated whether machine learning could exclude SARS-CoV-2 infection using routinely available laboratory values.

View Article and Find Full Text PDF

Background: The ability to predict transfusions arising during hospital admission might enable economized blood supply management and might furthermore increase patient safety by ensuring a sufficient stock of red blood cells (RBCs) for a specific patient. We therefore investigated the precision of four different machine learning-based prediction algorithms to predict transfusion, massive transfusion, and the number of transfusions in patients admitted to a hospital.

Study Design And Methods: This was a retrospective, observational study in three adult tertiary care hospitals in Western Australia between January 2008 and June 2017.

View Article and Find Full Text PDF