The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level.
View Article and Find Full Text PDFBackground/aims: Renal damage from ethylene glycol and primary hyperoxaluria is linked to accumulation of calcium oxalate monohydrate (COM) crystals in the renal proximal tubule (PT). In vitro studies have shown that aluminum citrate (AC), uniquely among citrate salts, blocks COM cytotoxicity to tubular cells. These studies were designed to evaluate the interaction of COM with membrane phospholipids and the ability of AC to reduce COM toxicity by interfering with this interaction.
View Article and Find Full Text PDFLaser ablation has been used ex situ to create metal nanoparticles for introduction into a reactive pyrolysis flame. By prior synthesis of the metal nanoparticles, the effects of the reactive gases can be clearly separated from the pyrolysis chemistry of a solvent carrier, as when nebulized solutions are used. Moreover, varying reactivity issues associated with particle growth and size are bypassed.
View Article and Find Full Text PDFLaser-induced incandescence applied to a heterogeneous, multielement reacting flow is characterized by temporally resolved emission spectra, time-resolved emission at selected detection wavelengths, and fluence dependence. Two-pulse laser measurements are used to further probe the effects of laser-induced changes on the optical signal. Laser fluences above 0.
View Article and Find Full Text PDF