In this study, a computational fluid dynamics (CFD) model was developed to predict all relevant phenomena occurring during a moist heat sterilization process at a high level of temporal and spatial resolution. The developed CFD model was used to simulate the distribution of, for example, pressure, temperature, and residual air within a large-scale industrial steam autoclave (multiphase flow models), which was not published until now. Moreover, the thermodynamic behavior and distribution of fluids and temperatures inside the sterilization load were simulated and were verified with measurements.
View Article and Find Full Text PDFThe aim of the present series of experiments was to compare various in vitro tools including evaluation of formulations influence on solubility, various dissolution tests, and an updated, miniaturized transfer model to forecast the behavior of novel formulations of the poorly soluble, weakly basic model compound ketoconazole (KETO) after oral administration. A binary complex with hydroxypropyl-β-cyclodextrin (HP-β-CD) and a ternary formulation with HP-β-CD and Soluplus® were evaluated and their solubility, dissolution, and transfer behavior was compared with that of the pure drug. Binary and ternary formulations could significantly improve (p < 0.
View Article and Find Full Text PDFLow aqueous solubility is often a limiting aspect to the bioavailability of poorly soluble, but highly permeable drugs (class II compounds according to the Biopharmaceutics Classification System - BCS) administered in single drug products or as fixed dose combinations. The aim of the present series of experiments was to improve the solubility and dissolution of two fixed dose combination formulations (FDC), each consisting of two BCS class II drugs. The first FDC contained a weak acid (glimepiride) and a weak base (pioglitazone), while the second FDC contained two compounds (simvastatin and ezetimibe) that are essentially non-ionised over the physiological pH range.
View Article and Find Full Text PDFThe aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®.
View Article and Find Full Text PDF