The wet-chemical synthesis of 3D confined antimony nanoparticles (Sb-NP) at low and high temperatures is described. Using reaction conditions that are mild in temperature and strong in reducing power allows the synthesis of amorphous Sb-NP stabilized with organic ligands. Exchanging the organic ligand 1-octanethiol by iodide enabled to investigate the unusual strong stability of this metastable material through simultaneous thermal analysis combining differential scanning calorimetry and thermogravimetric analysis.
View Article and Find Full Text PDFTailoring light-matter interaction is essential to realize nanophotonic components. It can be achieved with surface phonon polaritons (SPhPs), an excitation of photons coupled with phonons of polar crystals, which also occur in 2d materials such as hexagonal boron nitride or anisotropic crystals. Ultra-confined resonances are observed by restricting the SPhPs to cavities.
View Article and Find Full Text PDFExtended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer.
View Article and Find Full Text PDFPhase-change materials (PCMs) have been established as prime candidates for nonvolatile resonance tuning of nanophotonic components based on a large optical contrast between their amorphous and crystalline states. Recently, the plasmonic PCM InSbTe was introduced, which can be switched from an amorphous dielectric state to a crystalline metallic one over the entire infrared spectral range. While locally switching the PCM around metallic nanorod antennas has already been demonstrated, similar tuning of inverse antenna structures (nanoslits) has not yet been investigated.
View Article and Find Full Text PDFIn tetralayer graphene, three inequivalent layer stackings should exist; however, only rhombohedral (ABCA) and Bernal (ABAB) stacking have so far been observed. The three stacking sequences differ in their electronic structure, with the elusive third stacking (ABCB) being unique as it is predicted to exhibit an intrinsic bandgap as well as locally flat bands around the K points. Here, we use scattering-type scanning near-field optical microscopy and confocal Raman microscopy to identify and characterize domains of ABCB stacked tetralayer graphene.
View Article and Find Full Text PDFPhase-change materials (PCMs) allow for non-volatile resonance tuning of nanophotonic components. Upon switching, they offer a large dielectric contrast between their amorphous and crystalline phases. The recently introduced "plasmonic PCM" InSbTe (IST) additionally features in its crystalline phase a sign change of its permittivity over a broad infrared spectral range.
View Article and Find Full Text PDFTopological photonic crystals (TPhCs) provide robust manipulation of light with built-in immunity to fabrication tolerances and disorder. Recently, it was shown that TPhCs based on weak topology with a dislocation inherit this robustness and further host topologically protected lower-dimensional localized modes. However, TPhCs with weak topology at optical frequencies have not been demonstrated so far.
View Article and Find Full Text PDFChalcogenide phase change materials reversibly switch between non-volatile states with vastly different optical properties, enabling novel active nanophotonic devices. However, a fundamental understanding of their laser-switching behavior is lacking and the resulting local optical properties are unclear at the nanoscale. Here, we combine infrared scattering-type scanning near-field optical microscopy (SNOM) and Kelvin probe force microscopy (KPFM) to investigate four states of laser-switched GeSbTe (as-deposited amorphous, crystallized, reamorphized, and recrystallized) with nanometer lateral resolution.
View Article and Find Full Text PDFHere we directly probe the electronic properties of bilayer graphene using s-SNOM measurements with a broadly tunable laser source over the energy range from 0.3 to 0.54 eV.
View Article and Find Full Text PDFThe high dielectric optical contrast between the amorphous and crystalline structural phases of non-volatile phase-change materials (PCMs) provides a promising route towards tuneable nanophotonic devices. Here, we employ the next-generation PCM InSbTe (IST) whose optical properties change from dielectric to metallic upon crystallization in the whole infrared spectral range. This distinguishes IST as a switchable infrared plasmonic PCM and enables a programmable nanophotonics material platform.
View Article and Find Full Text PDFThe potential of extreme ultraviolet (EUV) computational proximity lithography for fabrication of arbitrary nanoscale patterns is investigated. We propose to use a holographic mask (attenuating phase shifting mask) consisting of structures of two phase levels. This approach allows printing of arbitrary, non-periodic structures without using high-resolution imaging optics.
View Article and Find Full Text PDFNanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response.
View Article and Find Full Text PDFMid-infrared (MIR) photonics demands highly confined optical fields to obtain efficient interaction between long-wavelength light and nanomaterials. Surface polaritons excited on polar semiconductor and metallic material interfaces exhibit near-fields localized on subwavelength scales. However, realizing a stronger field concentration in a cavity with a high quality ( Q) factor and a small mode volume is still challenging in the MIR region.
View Article and Find Full Text PDFWe report on the monolithic integration of a new class of reflown silica microtoroid resonators with silicon nanowaveguides fabricated on top of the silica film. Connectivity with other silicon photonics devices is enabled by inversion of the toroid geometry, defined by etching a circular opening rather than a disk in an undercut silica membrane. Intrinsic quality factors of up to 2 million are achieved and several avenues of process improvement are identified that can help attain the higher quality factors (> 10) that are possible in reflown microtoroids.
View Article and Find Full Text PDFCompact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful optical technologies such as adaptive optics and spatial light modulators. While the larger counterparts typically rely on mechanical actuation, this can be undesirable in some cases on a microscopic scale due to inherent space restrictions. Here, we present a novel design concept for highly integrated active optical components that employs a combination of resonant plasmonic metasurfaces and the phase-change material GeSbTe.
View Article and Find Full Text PDFSurface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment.
View Article and Find Full Text PDFWe present a study on subsurface imaging with an infrared scattering-type scanning near-field optical microscope (s-SNOM). The depth-limitation for the visibility of gold nanoparticles with a diameter of 50 nm under SiN is determined to about 50 nm. We first investigate spot size and signal strength concerning their particle-size dependence for a dielectric cover layer with positive permittivity.
View Article and Find Full Text PDFWe present a method for fabrication of large arrays of nano-antennas using extreme-ultraviolet (EUV) illumination. A discharge-produced plasma source generating EUV radiation around 10.88 nm wavelength is used for the illumination of a photoresist via a mask in a proximity printing setup.
View Article and Find Full Text PDFA switchable perfect absorber with multispectral thermal imaging capability is presented. Aluminum nanoantenna arrays above a germanium antimony telluride (GST) spacer layer and aluminum mirror provide efficient wavelength-tunable absorption in the mid-infrared. Utilizing the amorphous-to-crystalline phase transition in GST, this device offers switchable absorption with strong reflectance contrast at resonance and large phase-change-induced spectral shifts.
View Article and Find Full Text PDFHyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons.
View Article and Find Full Text PDFActive control over the handedness of a chiral metamaterial has the potential to serve as key element for highly integrated polarization engineering approaches, polarization sensitive imaging devices, and stereo display technologies. However, this is hard to achieve as it seemingly involves the reconfiguration of the metamolecule from a left-handed into a right-handed enantiomer and vice versa. This type of mechanical actuation is intricate and usually neither monolithically realizable nor viable for high-speed applications.
View Article and Find Full Text PDFWe report nanoscale-resolved optical investigations on the local material properties of Sb2Te3 hexagonal platelets grown by solvothermal synthesis. Using mid-infrared near-field microscopy, we find a highly symmetric pattern, which is correlated to a growth spiral and which extends over the entire platelet. As the origin of the optical contrast, we identify domains with different densities of charge carriers.
View Article and Find Full Text PDFAn ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO(3-x)) films on a soda-lime glass substrate, from which Na(+) diffuses into the WO(3-x) films during the deposition. The entire process of Na(+) migration driven by an alternating electric field is visualized in the Na-doped WO(3-x) films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques.
View Article and Find Full Text PDFScattering-type scanning near-field optical microscopy (SNOM) offers the possibility to analyze material properties like strain in crystals at the nanoscale. In this paper we introduce a SNOM setup employing a newly developed tunable broadband laser source with a covered spectral range from 9 µm to 16 µm. This setup allows for the first time optical analyses of the crystal structure of gallium nitride (GaN) at the nanometer scale by excitation of a near-field phonon resonance around 14.
View Article and Find Full Text PDFGraphene is a promising two-dimensional platform for widespread nanophotonic applications. Recent theories have predicted that graphene can also enhance evanescent fields for subdiffraction-limited imaging. Here, for the first time we experimentally demonstrate that monolayer graphene offers a 7-fold enhancement of evanescent information, improving conventional infrared near-field microscopy to resolve buried structures at a 500 nm depth with λ/11-resolution.
View Article and Find Full Text PDF