Publications by authors named "Thomas Tanggaard Alkeskjold"

Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dynamics, and allowing a simple method for determining TMI threshold based on standard deviation. The TMI frequency component is seen to appear on top of system noise that may trigger the onset.

View Article and Find Full Text PDF

We present a semi-analytic numerical model to estimate the transverse modal instability (TMI) threshold for photonic crystal rod amplifiers. The model includes thermally induced waveguide perturbations in the fiber cross section modeled with finite element simulations, and the relative intensity noise (RIN) of the seed laser, which seeds mode coupling between the fundamental and higher order mode. The TMI threshold is predicted to ~370 W - 440 W depending on RIN for the distributed modal filtering rod fiber.

View Article and Find Full Text PDF

We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability.

View Article and Find Full Text PDF

We present a simple semianalytical model of thermally induced mode coupling in multimode rare-earth doped fiber amplifiers. The model predicts that power can be transferred from the fundamental mode to a higher-order mode when the operating power exceeds a certain threshold, and thus provides an explanation of recently reported mode instability in such fiber amplifiers under high average-power operation. We apply our model to a simple step-index fiber design, and investigate how the power threshold depends on various design parameters of the fiber.

View Article and Find Full Text PDF

High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied.

View Article and Find Full Text PDF

We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect, which decreases the effective mode area. Furthermore, it is demonstrated that the thermal lensing effect may lead to effective multi-mode behavior, even in single-mode designs, which could possibly lead to degradation of the output beam quality.

View Article and Find Full Text PDF

Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving SM LMA rod fibers by using a photonic bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF).

View Article and Find Full Text PDF

An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short-wavelength edge and the long-wavelength edge of the bandpass filter are tuned individually or simultaneously with the response time in the millisecond range.

View Article and Find Full Text PDF

We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical permittivity is calculated and used in finite element mode simulations.

View Article and Find Full Text PDF

We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45 degrees as well as switched on and off with the response time in the millisecond range. The strength of the loss peak is controlled electrically, and the spectral position of the loss peak is thermally tunable.

View Article and Find Full Text PDF

We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00-1444) are used to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer.

View Article and Find Full Text PDF

A large-mode area polarization maintaining single-mode ytterbium-doped fiber amplifier with distributed narrow passband filtering is demonstrated. The fiber passband is 40 nm wide and centered at 1070 nm for efficient filtering of both short- and long-wavelength amplified spontaneous emission as well as stimulated raman scattering and four-wave-mixing. The fiber shows reduced bend sensitivity, has a mode field diameter of 27 microm and exhibits a slope efficiency of more than 65%.

View Article and Find Full Text PDF

An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave, true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70 degrees at 15 GHz and an averaged 12.9 ps true-time delay over the entire modulation frequency range of 1-15 GHz are obtained.

View Article and Find Full Text PDF

A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived.

View Article and Find Full Text PDF

We infiltrate photonic crystal fibers with a negative dielectric anisotropy liquid crystal. A 396 nm bandgap shift is obtained in the temperature range of 22-80 degrees C, and a 67 nm shift of long-wavelength bandgap edge is achieved by applying a voltage of 200 Vrms. The polarization sensitivity and corresponding activation loss are measured using polarized light and a full broadband polarization control setup.

View Article and Find Full Text PDF

This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used.

View Article and Find Full Text PDF

We demonstrate a highly tunable deep notch filter realized in a liquid-crystal photonic-bandgap (LCPBG) fiber. The filter is realized without inducing a long-period grating in the fiber but simply by filling a solid-core photonic-crystal fiber with a liquid crystal and exploiting avoided crossings within the bandgap of the LCPBG fiber. The filter is demonstrated experimentally and investigated using numerical simulations.

View Article and Find Full Text PDF

We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a high-index liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber - a so called liquid crystal photonic bandgap (LCPBG) fiber. Both the strength and resonance wavelength of the gratings are highly tunable.

View Article and Find Full Text PDF

We demonstrate a liquid crystal photonic bandgap fiber based polarizer integrated in a double silicon v-groove assembly. The polarizer axis can be electrically controlled as well as switched on and off.

View Article and Find Full Text PDF

We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 microm and an effective mode area of 440 microm2. The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature gradient of the refractive indices at room temperature. A bandgap tuning sensitivity of 27 nm/degrees C is achieved at room temperature.

View Article and Find Full Text PDF