Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na /Ca ) exchanger SLC8A1.
View Article and Find Full Text PDFEpigenetic regulations, that comprise histone modifications and DNA methylation, are essential to processes as diverse as development and cancer. Among the histone post-translational modifications, lysine methylation represents one of the most important dynamic marks. Here, we focused on methyltransferases of the nuclear binding SET domain 1 (NSD) family, that catalyze the mono- and di-methylation of histone H3 lysine 36.
View Article and Find Full Text PDFMicrophthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM.
View Article and Find Full Text PDFThe NOTCH signaling system regulates a variety of cellular processes during embryonic development and homeostasis maintenance in different tissues and contexts. Hence, dysregulation of NOTCH signaling is associated with a plethora of human cancers, and there have been multiple efforts to target key components of this pathway. In this review, we briefly highlight the latest research advances in understanding HES6, a poorly studied component of the NOTCH pathway.
View Article and Find Full Text PDFUveal melanoma (UM) is an aggressive and deadly neoplasm. In recent decades, great efforts have been made to obtain a more comprehensive understanding of genetics, genomics and molecular changes in UM, enabling the identification of key cellular processes and signalling pathways. Still, there is no effective treatment for the metastatic disease.
View Article and Find Full Text PDFIntratumor heterogeneity has been recognized in numerous cancers as a major source of metastatic dissemination. In uveal melanomas, the existence and identity of specific subpopulations, their biological function and their contribution to metastasis remain unknown. Here, in multiscale analyses using single-cell RNA sequencing of six different primary uveal melanomas, we uncover an intratumoral heterogeneity at the genomic and transcriptomic level.
View Article and Find Full Text PDFResistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies.
View Article and Find Full Text PDFIt is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements.
View Article and Find Full Text PDFTo address unmet clinical need for uveal melanomas, we assessed the effects of BH3-mimetic molecules, the ABT family, known to exert pro-apoptotic activities in cancer cells. Our results uncovered that ABT-263 (Navitoclax), a potent and orally bioavailable BCL-2 family inhibitor, induced antiproliferative effects in metastatic human uveal melanoma cells through cell cycle arrest at the G0/G1 phase, loss of mitochondrial membrane potential, and subsequently apoptotic cell death monitored by caspase activation and poly-ADP ribose polymerase cleavage. ABT-263-mediated reduction in tumor growth was also observed in vivo.
View Article and Find Full Text PDFMalignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients.
View Article and Find Full Text PDFWhile multiple mechanisms of BRAF-mutant melanoma resistance to targeted MAPK signaling inhibitors (MAPKi) have been reported, the epigenetic regulation of this process remains undetermined. Here, using a CRISPR-Cas9 screen targeting chromatin regulators, we discover that haploinsufficiency of the histone deacetylase SIRT6 allows melanoma cell persistence in the presence of MAPKi. Haploinsufficiency, but not complete loss of SIRT6 promotes IGFBP2 expression via increased chromatin accessibility, H3K56 acetylation at the IGFBP2 locus, and consequent activation of the IGF-1 receptor (IGF-1R) and downstream AKT signaling.
View Article and Find Full Text PDFBackground: MITF encodes an oncogenic lineage-specific transcription factor in which a germline mutation ( MITFE318K ) was identified in human patients predisposed to both nevus formation and, among other tumor types, melanoma. The molecular mechanisms underlying the oncogenic activity of MITF E318K remained uncharacterized.
Methods: Here, we compared the SUMOylation status of endogenous MITF by proximity ligation assay in melanocytes isolated from wild-type (n = 3) or E318K (n = 4) MITF donors.
MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro.
View Article and Find Full Text PDFHistone variants are emerging as key regulatory molecules in cancer. We report a unique role for the H2A.Z isoform H2A.
View Article and Find Full Text PDFMicrophthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7.
View Article and Find Full Text PDFSo far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers.
View Article and Find Full Text PDF