Publications by authors named "Thomas Stoisser"

L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr(215) in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site.

View Article and Find Full Text PDF

Among α-hydroxy acid-oxidizing flavoenzymes l-lactate oxidase (LOX) is unique in featuring a second-sphere tyrosine (Tyr191 in Aerococcus viridans LOX; avLOX) at the binding site for the substrate's carboxylate group. Y191F, Y191L and Y191A variants of avLOX were constructed to affect a hydrogen-bond network connecting Tyr191 to the carboxylate of the bound ligand via the conserved Tyr40 and to examine consequent effects on enzymatic reactivity. Kinetic studies at 20 °C and pH 6.

View Article and Find Full Text PDF

Aerococcus viridansl-lactate oxidase (avLOX) is a biotechnologically important flavoenzyme that catalyzes the conversion of L-lactate and O₂ into pyruvate and H₂O₂. The enzymatic reaction underlies different biosensor applications of avLOX for blood L-lactate determination. The ability of avLOX to replace O₂ with other electron acceptors such as 2,6-dichlorophenol-indophenol (DCIP) allows the possiblity of analytical and practical applications.

View Article and Find Full Text PDF

Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes.

View Article and Find Full Text PDF

A defined bioconjugate of Aerococcus viridans L-lactate oxidase and poly(ethylene glycol) 5000 was prepared and characterized in its structural and functional properties in comparison to the unmodified enzyme. Because the L-lactate oxidase in the native form does not contain cysteines, we introduced a new site for chemical modification via thiol chemistry by substituting the presumably surface-exposed serine-218, a nonconserved residue in the amino acid sequence, with cysteine. The resulting S218C mutant was isolated from Escherichia coli and shown in kinetic assays to be similarly (i.

View Article and Find Full Text PDF