The EQIPD Quality System was designed with the ultimate mission to provide a framework to ensure the quality and integrity of non-regulated preclinical biomedical research. For research quality to be sustained over time, it is crucial to have continuous improvement mechanisms that routinely monitor the research-related processes and enable solutions for identified issues. The present article is focused on these monitoring and assessment procedures that make the EQIPD Quality System a fully functional 'system' (as opposed to a mere collection of guidelines, work instructions and policies).
View Article and Find Full Text PDFRecently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research.
View Article and Find Full Text PDFDisappointments in translating preclinical findings into clinical efficacy have triggered a number of changes in neuroscience drug discovery ranging from investments diverted to other therapeutic areas to reduced reliance on efficacy claims derived from preclinical models. In this chapter, we argue that there are several existing examples that teach us on what needs to be done to improve the success rate. We advocate the reverse engineering approach that shifts the focus from preclinical efforts to "model" human disease states to pharmacodynamic activity as a common denominator in the journey to translate clinically validated phenomena to preclinical level and then back to humans.
View Article and Find Full Text PDFLaboratory workflows and preclinical models have become increasingly diverse and complex. Confronted with the dilemma of a multitude of information with ambiguous relevance for their specific experiments, scientists run the risk of overlooking critical factors that can influence the planning, conduct and results of studies and that should have been considered . To address this problem, we developed "PEERS" (Platform for the Exchange of Experimental Research Standards), an open-access online platform that is built to aid scientists in determining which experimental factors and variables are most likely to affect the outcome of a specific test, model or assay and therefore ought to be considered during the design, execution and reporting stages.
View Article and Find Full Text PDFReproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour and reproduce the methods and results.
View Article and Find Full Text PDFWhile high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions.
View Article and Find Full Text PDFReproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results.
View Article and Find Full Text PDFReproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results.
View Article and Find Full Text PDFImproving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments.
View Article and Find Full Text PDFReproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2020
Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results.
View Article and Find Full Text PDFReproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results.
View Article and Find Full Text PDFReproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results.
View Article and Find Full Text PDFOver the last two decades, awareness of the negative repercussions of flaws in the planning, conduct and reporting of preclinical research involving experimental animals has been growing. Several initiatives have set out to increase transparency and internal validity of preclinical studies, mostly publishing expert consensus and experience. While many of the points raised in these various guidelines are identical or similar, they differ in detail and rigour.
View Article and Find Full Text PDFEur Neuropsychopharmacol
December 2019
Both positive and negative (null or neutral) results are essential for the progress of science and its self-correcting nature. However, there is general reluctance to publish negative results, and this may be due a range of factors (e.g.
View Article and Find Full Text PDFAnimal care and use play a pivotal role in the research process. Ethical concerns on the use of animals in research have promoted the creation of a legal framework in many geographical areas that researchers must comply with, and professional organizations continuously develop recommendations on specific areas of laboratory animal science. Scientific evidence demonstrates that many aspects of animal care and use which are beyond the legal requirements have direct impact on research results.
View Article and Find Full Text PDFObjective: Within the last years, there has been growing awareness of the negative repercussions of unstandardized planning, conduct and reporting of preclinical and biomedical research. Several initiatives have set the aim of increasing validity and reliability in reporting of studies and publications, and publishers have formed similar groups. Additionally, several groups of experts across the biomedical spectrum have published experience and opinion-based guidelines and guidance on potential standardized reporting.
View Article and Find Full Text PDFIn 2010, the NC3Rs published the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines to improve the reporting of animal research. Despite considerable levels of support from the scientific community, the impact on the quality of reporting in animal research publications has been limited. This position paper highlights the strategy of an expert working group established to revise the guidelines and facilitate their uptake.
View Article and Find Full Text PDFThere are many reasons why novel therapeutics fail in clinical trials but these failures are often attributed to lacking quality of preclinical data. These problems are not limited to any specific therapeutic area, academic or industrial research and are due in large part to several generic factors influencing research quality (e.g.
View Article and Find Full Text PDFNormal aging is often accompanied by reductions in cognitive abilities as well as impairments in visual acuity in men and mice. In preclinical models of human cognition this concomitance can make it difficult to assess the relative contributions of declined vision and cognitive ability on behavioral measures of cognition. To assess the influence of age on cognition and the impact of visual decline on the performance of touchscreen-based behavioral paradigms in mice, aged (11, 12, 16, 17, 19 and 21 months old) male C57BL/6J mice were compared to young (3 or 4 months old) male C57BL/6J mice using three tests of cognition as well as an assessment of visual acuity.
View Article and Find Full Text PDFBackground: Major depressive disorder (MDD) is a heterogeneous disease at the level of clinical symptoms, and this heterogeneity is likely reflected at the level of biology. Two clinical subtypes within MDD that have garnered interest are "melancholic depression" and "anxious depression". Metabolomics enables us to characterize hundreds of small molecules that comprise the metabolome, and recent work suggests the blood metabolome may be able to inform treatment decisions for MDD, however work is at an early stage.
View Article and Find Full Text PDFThe rodent has been used to model various aspects of the human visual system, but it is unclear to what extent human visual perception can be modelled in the rodent. Research suggests rodents can perform invariant object recognition tasks in a manner comparable to humans. There is further evidence that rodents also make use of certain grouping cues, but when performing a shape discrimination they have a tendency to rely much more on local image cues than human participants.
View Article and Find Full Text PDF