Publications by authors named "Thomas St-Denis"

Solid-state nanopores exhibit dynamically variable sizes influenced by buffer conditions and applied electric field. While dynamical pore behavior can complicate biomolecular sensing, it also offers opportunities for controlled, modification of pore size post-fabrication. In order to optimally harness solid-state pore dynamics for controlled growth, there is a need to systematically quantify pore growth dynamics and ideally develop quantitative models to describe pore growth.

View Article and Find Full Text PDF

Nanopores embedded in two-dimensional (2D) nanomaterials are a promising emerging technology for osmotic power generation. Here, coupling our new AFM-based pore fabrication approach, tip-controlled local breakdown (TCLB), with a hybrid membrane formed by coating silicon nitride (SiN) with hexagonal boron nitride (hBN), we show that high osmotic power density can be obtained in systems that do not possess the thinness of atomic monolayers. In our approach, the high osmotic performance arises from charge separation induced by the highly charged hBN surface rather than charge on the inner pore wall.

View Article and Find Full Text PDF