Publications by authors named "Thomas Spande"

Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. As part of a larger investigation, we describe the chemical constituents of 14 species of Tasmanian millipedes in seven genera. Six species in the genus Gasterogramma were found to produce acyclic ketones, including the pungent unsaturated ketones 1, 2, and 6, and the novel (rel-3R,5S,7S)-3,5,7-trimethyl-2,8-decanedione (7b), for which the stereoconfiguration was established by stereoselective syntheses of pairs of isomers.

View Article and Find Full Text PDF

Seventy skins of three mantellid frog species from Madagascan swamp-forest habitats, Mantella aurantiaca, M. crocea, and M. milotympanum, were individually examined for skin alkaloids using GC/MS.

View Article and Find Full Text PDF

The opisthonotal (oil) glands of oribatid mites are the source of a wide diversity of taxon-specific defensive chemicals, and are likely the location for the more than 90 alkaloids recently identified in oribatids. Although originally recognized in temperate oribatid species, alkaloids have also been detected in related lineages of tropical oribatids. Many of these alkaloids are also present in a worldwide radiation of poison frogs, which are known to sequester these defensive chemicals from dietary arthropods, including oribatid mites.

View Article and Find Full Text PDF

GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, whether known or new to us, in only one of the ten skins sampled, despite two skins being obtained from each breeding site of the five populations.

View Article and Find Full Text PDF

Nearly 500 alkaloids, representing over 20 structural classes, have been identified from the skin of neotropical poison frogs (Dendrobatidae). These cutaneous compounds, which are derived from arthropod prey of the frogs, generally are believed to deter predators. We tested the red imported fire ant (Solenopsis invicta) for toxicosis following contact with 20 alkaloids (12 structural classes) identified from dendrobatids or other anurans.

View Article and Find Full Text PDF

Workers of the ant Carebarella bicolor collected in Panama were found to have two major poison-frog alkaloids, cis- and trans-fused decahydroquinolines (DHQs) of the 269AB type, four minor 269AB isomers, two minor 269B isomers, and three isomers of DHQ 271D. For the first time in an ant, however, the DHQs were accompanied by six histrionicotoxins (HTXs), viz., 283A, 285A, 285B, 285C, 287A, and 287D.

View Article and Find Full Text PDF

Poison frogs are chemically defended from predators by diverse alkaloids, almost all of which are sequestered unchanged from alkaloid-containing arthropods in the frog diet. Oribatid mites recently have been proposed as a major dietary source of poison frog alkaloids. Here, we report on alkaloids common to an oribatid mite and poison frogs.

View Article and Find Full Text PDF

The skin of the Ecuadorian poison frog Epipedobates anthonyi contains the potent nicotinic agonists epibatidine (1) and N-methylepibatidine (3). In addition, a condensed tetracyclic epibatidine congener has been identified with activity at nicotinic acetylcholine receptors, but different selectivity than epibatidine. This rigid tetracycle has been named phantasmidine (4).

View Article and Find Full Text PDF

Four five-skin alkaloid extracts of the Madagascan poison frog Mantella baroni from three disturbed collection sites were compared with four five-skin extracts from three undisturbed sites. The number of alkaloids (diversity) was significantly different in M. baroni between undisturbed and disturbed collection sites, with more alkaloids generally being found in frogs from disturbed sites.

View Article and Find Full Text PDF

Analysis of the extracts of male ants of Monomorium minimum and Monomorium ebeninum by GC-MS and GC-FTIR revealed the presence of tyramides 2 and 4c, for which the structures were established by comparison with synthetic samples. These compounds and their analogues 1 and 3 were also found in males of other Monomorium species, males of Myrmicaria opaciventris, and males of several Solenopsis (Diplorhoptrum) species. Vapor-phase FTIR spectra revealed critically important structural clues to two of the tyramides, which had methyl branching in the tyramide acyl moiety.

View Article and Find Full Text PDF

Poison frogs contain an alkaloid-based chemical defense that is sequestered directly from a diet of alkaloid-containing arthropods. Geographic and temporal variation in alkaloid defense is common in poison frogs and is generally attributed to differences in the availability of alkaloid-containing arthropods. Variable chemical defense in poison frogs may have important consequences for predator-prey interactions, requiring a full understanding of the factors involved in explaining such variation.

View Article and Find Full Text PDF

An efficient and flexible synthesis of poison-frog alkaloids 251O and trans-223B has been achieved by using for both alkaloids an enantiodivergent process starting from the common lactam 1. The relative stereochemistry of 251O and trans-223B was determined to be 7 (R = n-C(7)H(15), R' = n-Pr) and 14 by the present enantioselective synthesis.

View Article and Find Full Text PDF

The dominant alkaloids previously identified in skin extracts of Amazonian dendrobatid frogs of the genus Ameerega are histrionicotoxins and 2,5-disubstituted decahydroquinolines. Analysis of alkaloids in skin extracts of Ameerega picta from Bolivia revealed that the alkaloid 257A, previously reported as a 2,5-disubstituted decahydroquinoline, is an N-methyl-2,5-disubstituted decahydroquinoline. We characterized alkaloids of another 12 of the more than 25 species recently assigned to the genus Ameerega, and five additional N-methyldecahydroquinolines were identified.

View Article and Find Full Text PDF

In 2003, we reported the isolation, structure elucidation, and pharmacology of epiquinamide (1), a novel alkaloid isolated from an Ecuadoran poison frog, Epipedobates tricolor. Since then, several groups, including ours, have undertaken synthetic efforts to produce this compound, which appeared initially to be a novel, beta2-selective nicotinic acetylcholine receptor agonist. Based on prior chiral GC analysis of synthetic and natural samples, the absolute structure of this alkaloid was established as (1S,9aS)-1-acetamidoquinolizidine.

View Article and Find Full Text PDF

Alkaloid profiles in skin of poison frogs/toads (Dendrobatidae, Mantellidae, Bufonidae, and Myobatrachidae) are highly dependent on diet and hence on the nature of habitat. Extracts of the two species of toads (Melanophryniscus klappenbachi and Melanophryniscus cupreuscapularis) from similar habitats in the Corrientes/Chaco Provinces of Argentina have similar profiles of alkaloids, which differ considerably in profiles from other Melanophryniscus species from Brazil, Uruguay and Argentina. Structures of two major alkaloids 239Q (1) and 275I (2) were determined by mass, FTIR, and NMR spectral analysis as 5Z,9Z-3-(1-hydroxybutyl)-5-propylindolizidine and 6Z,10E-4,6-di(pent-4-enyl) quinolizidine, respectively.

View Article and Find Full Text PDF

A stereoselective synthesis of (+)-epiquinamide is presented in combination with determination of the absolute configuration of the natural product. Key steps in the sequence involved chemoenzymatic formation of an enantiomerically pure cyanohydrin, reductive cyclization to the corresponding cyclic N,N-acetal, and subsequent conversion into a suitable N-acyliminium ion precursor to enable construction of the second ring.

View Article and Find Full Text PDF

A short synthesis of the postulated structure for indolizidine alkaloid 259B with the hydrogens at C5 and C9 entgegen has been achieved with complete control of stereochemistry at C5. Both diastereoisomers at C8 were obtained, but neither proved to be the natural product. The comparison of the mass and FTIR spectral properties of the synthetic compounds to those of the natural material strongly suggest that the gross structure is correct and that the difference may be a branch in the C5 alkyl side-chain.

View Article and Find Full Text PDF

Alkaloid profiles for 81 individual mantellid frogs, Mantella baroni (Boulenger 1988) (N = 19), M. bernhardi (N = 51), and M. madagascariensis (Grandidier 1877) (N = 11), from six different populations from Madagascar were examined.

View Article and Find Full Text PDF

Background: The 5,8-disubstituted indolizidines are the largest class of poison-frog alkaloids found in anuran skin, and are of considerable interest because of their inhibitory effects on the neuronal nicotinic acetylcholine receptors. Many synthetic strategies for the construction of this nucleus have been reported: however, a flexible route has not been reported to date.

Results: Synthesis of lactam chiral building blocks for the flexible synthesis of the title alkaloids has been achieved using a Michael-type conjugate addition reaction to a chiral cyclic enamine ester as the key step in constructing the trisubstituted piperidine ring system.

View Article and Find Full Text PDF

We previously reported that the synthetic quinolizidine 1-epi-207I is a relatively selective blocker of alpha7 nicotinic acetylcholine receptors. We now synthesized the analogous poison frog alkaloids 233A, 235U, and 251AA, and investigated the biological activities at two major types of neuronal nicotinic receptors. Electrophysiological study showed that the alkaloid 233A blocked alpha7 and alpha4beta2 currents with similar potencies.

View Article and Find Full Text PDF

A total of 232 alkaloids, representing 21 structural classes were detected in skin extracts from the dendrobatid poison frog Oophaga pumilio, collected from 53 different populations from over 30 years of research. The highly toxic pumiliotoxins and allopumiliotoxins, along with 5,8-disubstitiuted and 5,6,8-trisubstituted indolizidines, all of which are proposed to be of dietary mite origin, were common constituents in most extracts. One decahydroquinoline (DHQ), previously shown be of ant origin, occurred in many extracts often as a major alkaloid, while other DHQs occurred rather infrequently.

View Article and Find Full Text PDF

Alkaloids in the skin glands of poison frogs serve as a chemical defense against predation, and almost all of these alkaloids appear to be sequestered from dietary arthropods. Certain alkaloid-containing ants have been considered the primary dietary source, but dietary sources for the majority of alkaloids remain unknown. Herein we report the presence of approximately 80 alkaloids from extracts of oribatid mites collected throughout Costa Rica and Panama, which represent 11 of the approximately 24 structural classes of alkaloids known in poison frogs.

View Article and Find Full Text PDF

Analysis of the extracts of the ant Myrmicaria melanogaster from Brunei in the Indonesian archipelago by GC-MS and GC-IR revealed the presence of five new alkaloids, identified as (9Z)-3-propylindolizidine (1), cis- and trans-2-butyl-5-propylpyrrolidine (2 and 3, respectively), (10E)-3-butyllehmizidine (7), and (5Z,8Z,9Z)-3-butyl-5-propyl-8-hydroxyindolizidine (10a), whose structures were established by comparison with synthetic samples. In addition the monoterpene hydrocarbons beta-pinene, myrcene, and limonene were detected along with all four isomers of 3-butyl-5-methylindolizidine (4a-d), cis- and trans-2-butyl-5-(4-pentenyl)pyrrolidine (5a and 5b), trans-2-butyl-5-pentylpyrrolidine (6), (5Z,9Z)-3-butyl-5-propylindolizidine (8), and (5Z,9E)-3-butyl-5-propylindolizidine (9), alkaloids well known from ants and frogs, whose structures were established on the basis of published spectra or comparison with authentic samples. This study utilized vapor-phase infrared analysis for the assignment of stereochemistry using Bohlmann bands for the bicyclic alkaloids and, in the case of 10a, the detection of an intramolecular hydrogen bond.

View Article and Find Full Text PDF

Background: The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds.

View Article and Find Full Text PDF
Article Synopsis
  • Neotropical poison frogs produce lipophilic alkaloids, including pumiliotoxins, which are toxic compounds that protect them from predators and may also have effects on ectoparasites.
  • A study tested the effects of a specific pumiliotoxin, PTX (+)-251D, on female yellow fever mosquitoes (Aedes aegypti), finding that it reduced their landing and feeding at lower concentrations compared to its enantiomer, PTX (-)-251D.
  • Results showed that PTX (+)-251D caused greater lethargy and injury in mosquitoes, indicating its potential role as a chemical defense mechanism against these ectoparasitic insects.
View Article and Find Full Text PDF