To improve the understanding of the extraction chemistry of An(iii) and Ln(iii) with N-donor ligands 2,6-bis(5-(-butyl)-1-pyrazol-3-yl)pyridine (C4-BPP) in the presence of 2-bromohexanoic acid was investigated. Extraction studies showed an excellent separation factor of SF ≈ 200 and SF ≈ 60 in comparison with the structurally similar ligand 2,6-bis(5-neopentyl-1-pyrazol-3-yl)pyridine C5-BPP (SF ≈ 100), even though C5-BPP showed significantly higher stability constants. Time-resolved laser fluorescence spectroscopy (TRLFS) studies revealed the formation of the ternary 1 : 1 and 1 : 2 complexes [Eu(C4-BPP) (2-bromohexanoate) ] ( = 1-2) ( and ).
View Article and Find Full Text PDFHere, we report the synthesis of the 6-(6-methyl-1,2,4,5-tetrazine-3-yl)-2,2'-bipyridine (MTB) ligand that has been developed for lanthanide/actinide separation. A multimethod study of the complexation of MTB with trivalent actinide and lanthanide ions is presented. Single-crystal X-ray diffraction measurements reveal the formation of [Ce(MTB)(NO)], [Pr(MTB)(NO)HO], and [Ln(MTB)(NO)MeCN] (Ln = Nd, Sm, Eu, Gd).
View Article and Find Full Text PDFNovel hydrophilic ligands to selectively separate Am(III) are synthesized: 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PrOH-BPTD) and 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1-1,2,3-triazole-4,1-diyl))bis(ethan-1-ol) (EtOH-BPTD). The complexation of An(III) and Ln(III) with PrOH- and EtOH-BPTD is studied by time-resolved laser fluorescence spectroscopy. [ML] is found for both Cm(III) and Eu(III), while [ML] is only formed with Cm(III).
View Article and Find Full Text PDFIn this work, we report a combined NMR spectroscopic and time-resolved laser fluorescence spectroscopic (TRLFS) study of the complexation of ,,','-tetraethyl-2,6-carboxamidopyridine (Et-Pic) with Ln(III) (La, Sm, Eu, and Lu), Y(III) and An(III) (Am and Cm). The focal point of this study was the metal-ligand interaction in the [M(Et-Pic)] (M = An and Ln) complexes. The NMR analyses found slight differences between the An(III)-N and Ln(III)-N interactions in contrast to the similar properties of the Am(III)-O and Ln(III)-O interactions.
View Article and Find Full Text PDFAmmonium pertechnetate reacts in mixtures of trifluoromethanesulfonic anhydride and trifluoromethanesulfonic acid under final formation of ammonium pentakis(trifluoromethanesulfonato)oxidotechnetate(V), (NH ) [TcO(OTf) ]. The reaction proceeds only at exact concentrations and under the exclusion of air and moisture via pertechnetyl trifluoromethanesulfonate, [TcO (OTf)], and intermediate Tc species. Tc nuclear magnetic resonance (NMR) has been used to study the Tc compound and electron paramagnetic resonance (EPR), Tc NMR and X-ray absorption near-edge structure (XANES) experiments indicate the presence of the reduced technetium species.
View Article and Find Full Text PDFA combined NMR spectroscopic and theoretical study on the complexation of diamagnetic Th(IV) with 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (Pr-BTP) was performed. Different ligand configurations were observed for [Th(Pr-BTP)] complexes depending on the solvent's ability to actively form hydrogen bonds. In polar aprotic solvents, a complex is observed, which is isostructural with [M(Pr-BTP)] (M = Am, Ln) complexes studied earlier.
View Article and Find Full Text PDFCombination of three radical anionic Ph-BIAN ligands (Ph-BIAN=bis-(phenylimino)-acenaphthenequinone) with lanthanoid ions leads to a series of homoleptic, six-coordinate complexes of the type Ln(Ph-BIAN) . Magnetic coupling data were measured by paramagnetic solution NMR spectroscopy. Combining H NMR with H NMR of partially deuterated compounds allowed a detailed study of the magnetic susceptibility anisotropies over a large temperature range.
View Article and Find Full Text PDF