Increasing survival rates of children following cancer treatment have resulted in a significant population of adult survivors with the common side effect of infertility. Additionally, the availability of genetic testing has identified Klinefelter syndrome (classic 47,XXY) as the cause of future male infertility for a significant number of prepubertal patients. This study explores new spermatogonia stem cell (SSC)-based fertility therapies to meet the needs of these patients.
View Article and Find Full Text PDFTissues on a chip are sophisticated three-dimensional (3D) microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility.
View Article and Find Full Text PDFThe fields of regenerative medicine and tissue engineering offer new therapeutic options to restore, maintain or improve tissue function following disease or injury. To maximize the biological function of a tissue-engineered clinical product, specific conditions must be maintained within a bioreactor to allow the maturation of the product in preparation for implantation. Specifically, the bioreactor should be designed to mimic the mechanical, electrochemical and biochemical environment that the product will be exposed to in vivo.
View Article and Find Full Text PDFCurrent practices in drug development have led to therapeutic compounds being approved for widespread use in humans, only to be later withdrawn due to unanticipated toxicity. These occurrences are largely the result of erroneous data generated by in vivo and in vitro preclinical models that do not accurately recapitulate human physiology. Herein, a human primary cell- and stem cell-derived 3D organoid technology is employed to screen a panel of drugs that were recalled from market by the FDA.
View Article and Find Full Text PDFFibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life.
View Article and Find Full Text PDFBackground: Autologous urothelial cells are often obtained via bladder biopsy to generate the bio-engineered urethra or bladder, while urine-derived stem cells (USC) can be obtained by a non-invasive approach. The objective of this study is to develop an optimal strategy for urothelium with permeability barrier properties using human USC which could be used for tissue repair in the urinary tract system.
Methods: USC were harvested from six healthy adult individuals.
Stem Cells Transl Med
August 2018
Regenerative medicine is poised to become a significant industry within the medical field. As such, the development of strategies and technologies for standardized and automated regenerative medicine clinical manufacturing has become a priority. An industry-driven roadmap toward industrial scale clinical manufacturing was developed over a 3-year period by a consortium of companies with significant investment in the field of regenerative medicine.
View Article and Find Full Text PDFIntroduction: Environmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S.
View Article and Find Full Text PDFMany drugs have progressed through preclinical and clinical trials and have been available - for years in some cases - before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues.
View Article and Find Full Text PDFOrganoid and organ-on-a-chip technologies are rapidly advancing towards deployment for drug and toxicology screening applications. Liver and cardiac toxicities account for the majority of drug candidate failures in human trials. Liver toxicity generally produces liver cell death, while cardiac toxicity causes adverse changes in heart beat kinetics.
View Article and Find Full Text PDFOrgan-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body.
View Article and Find Full Text PDFEngineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium.
View Article and Find Full Text PDFDrug Discov Today
September 2016
In recent years, advances in tissue engineering and microfabrication technologies have enabled rapid growth in the areas of in vitro organoid development as well as organoid-on-a-chip platforms. These 3D model systems often are able to mimic human physiology more accurately than traditional 2D cultures and animal models. In this review, we describe the progress that has been made to generate organ-on-a-chip platforms and, more recently, more complex multi-organoid body-on-a-chip platforms and their applications.
View Article and Find Full Text PDFBioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues.
View Article and Find Full Text PDFThe inadequacy of animal models in correctly predicting drug and biothreat agent toxicity in humans has resulted in a pressing need for in vitro models that can recreate the in vivo scenario. One of the most important organs in the assessment of drug toxicity is liver. Here, we report the development of a liver-on-a-chip platform for long-term culture of three-dimensional (3D) human HepG2/C3A spheroids for drug toxicity assessment.
View Article and Find Full Text PDFTissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking.
View Article and Find Full Text PDFUnlabelled: Advancement of bioprinting technology is limited by the availability of materials that both facilitate bioprinting logistics as well as support cell viability and function by providing tissue-specific cues. Herein we describe a modular hyaluronic acid (HA) and gelatin-based hydrogel toolbox comprised of a 2-crosslinker, 2-stage polymerization technique, and the capability to provide tissue specific biochemically and mechanically accurate signals to cells within biofabricated tissue constructs. First, we prepared and characterized several tissue-derived decellularized extracellular matrix-based solutions, which contain complex combinations of growth factors, collagens, glycosaminoglycans, and elastin.
View Article and Find Full Text PDFDonor shortage remains a continued challenge in liver transplantation. Recent advances in tissue engineering have provided the possibility of creating functional liver tissues as an alternative to donor organ transplantation. Small bioengineered liver constructs have been developed, however a major challenge in achieving functional bioengineered liver in vivo is the establishment of a functional vasculature within the scaffolds.
View Article and Find Full Text PDFLiver disease affects millions of patients each year. The field of regenerative medicine promises alternative therapeutic approaches, including the potential to bioengineer replacement hepatic tissue. One approach combines cells with acellular scaffolds derived from animal tissue.
View Article and Find Full Text PDFThis review illustrates promising regenerative medicine technologies that are being developed for the treatment of gastrointestinal diseases. The main strategies under validation to bioengineer or regenerate liver, pancreas, or parts of the digestive tract are twofold: engineering of progenitor cells and seeding of cells on supporting scaffold material. In the first case, stem cells are initially expanded under standard tissue culture conditions.
View Article and Find Full Text PDFObjective: We have identified a novel protein in bone marrow-derived insulin-producing cells. Here we characterize this protein, hereby named islet homeostasis protein (IHoP), in the pancreatic islet.
Methods: Detection of IHoP mRNA and protein was performed using reverse transcriptase-polymerase chain reaction, immunocytochemistry, and in situ hybridization.
BACKGROUND AND AIMS: Activation of the oval cell compartment occurs in the liver when hepatocytes are functionally compromised and/or unable to divide. Our goal was to investigate the systemic signals responsible for determining the efficiency of oval cell-mediated liver regeneration, focusing on the Notch signaling cascade. METHODS: The established oval cell induction protocol of 2-acetylaminofluorine (2-AAF) implantation followed by 70% surgical resection of the liver (partial hepatectomy, PH) was employed in a rat model.
View Article and Find Full Text PDFWe have developed a method for the decellularization of whole rat livers by perfusion with increasing concentrations of detergents. This procedure resulted in an intact, decellularized organ with an intact liver capsule. These decellularized organs were analyzed by immunohistochemistry, and retained an appropriate distribution of extracellular matrix components.
View Article and Find Full Text PDFInt J Biochem Cell Biol
February 2011
Orthotopic liver transplant represent the state of the art treatment for terminal liver pathologies such as cirrhosis in adults and hemochromatosis in neonates. A limited supply of transplantable organs in relationship to the demand means that many patients will succumb to disease before an organ becomes available. One promising alternative to liver transplant is therapy based on the transplant of liver progenitor cells.
View Article and Find Full Text PDF