Publications by authors named "Thomas Shier"

The yellow mealworm, Tenebrio molitor, L., can be an important component of the circular economy because of its ability to transform a variety of agricultural wastes and byproducts into valuable livestock feed. Analysis of their ability to endure toxins coupled with their potential to transfer contaminants to higher trophic levels is not complete.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease caused by protozoan parasites and transmitted to humans by the sandfly vector. Currently, the disease has limited therapeutic alternatives. Thiourea derivatives were designed, synthesized, and screened for antileishmanial activity.

View Article and Find Full Text PDF

The genus is a leading source of a wide range of structurally diverse metabolites with significant pharmacological implications. The present study investigated metabolite profiling, pharmacological investigation, anticancer potential, and molecular docking analysis of the stem part of (AHS). The metabolite profiling of the AHS extract was experimentally examined using LC-MS/MS-orbitrap in both modes (ESI/ESI) and GC-MS in EI mode.

View Article and Find Full Text PDF

Mycotoxins that contaminate grain can cause the devaluation of agricultural products and create health risks for the consumer. Fumonisins are one such mycotoxin. Produced primarily by Fusarium verticillioides (Hypocreales: Nectriaceae) (Nirenberg, 1976) on corn, fumonisins' economic impact can be significant by causing various diseases in livestock if contaminated corn is not monitored and removed from animal feed.

View Article and Find Full Text PDF

Charcoal rot, caused by , is a major soybean disease resulting in significant yield loss and poor seed quality. Currently, no resistant soybean cultivar is available in the market and resistance mechanisms to charcoal rot are unknown, although the disease is believed to infect plants from infected soil through the roots by unknown toxin-mediated mechanisms. The objective of this research was to investigate the association between seed sugars (sucrose, raffinose, stachyose, glucose, and fructose) and their role as biomarkers in the soybean defense mechanism in the moderately resistant (MR) and susceptible (S) genotypes to charcoal rot.

View Article and Find Full Text PDF

In recent years, some countries have replaced single-use plastic bags with bags manufactured from compostable plastic film that can be used for collecting food wastes and composted together with the waste. Because industrial compost contains undeteriorated fragments of these bags, application to field soil is a potential source of small-sized residues from these bags. This study was undertaken to examine deterioration of these compostable film microplastics (CFMPs) in field soil at three different localities in Italy.

View Article and Find Full Text PDF

Charcoal rot is a major disease of soybean () caused by and results in significant loss in yield and seed quality. The effects of charcoal rot on seed composition (seed protein, oil, and fatty acids), a component of seed quality, is not well understood. Therefore, the objective of this research was to investigate the impact of charcoal rot on seed protein, oil, and fatty acids in different soybean genotypes differing in their charcoal rot susceptibility under irrigated and non-irrigated conditions.

View Article and Find Full Text PDF

(Tassi) Goid., the causal agent of charcoal rot disease of soybean, is capable of causing disease in more than 500 other commercially important plants. This fungus produces several secondary metabolites in culture, including (-)-botryodiplodin, phaseolinone and mellein.

View Article and Find Full Text PDF

An increasing number of states and municipalities are choosing to reduce plastic litter by replacing plastic items, particularly single-use ones, with same-use products manufactured from compostable plastics. This study investigated the formation and persistence of compostable film microplastic particles (CFMPs) from ultra-thin compostable carrier bags in soil under laboratory conditions, and the potential impact of CFMPs on Aspergillus flavus populations in the soil. During a 12-month incubation period, compostable film samples in soils with small, medium or large populations of indigenous A.

View Article and Find Full Text PDF
Article Synopsis
  • Toxins like (-)-botryodiplodin can create areas of dead tissue on soybean roots, which may help fungi infect the plants more easily.
  • Laboratory tests showed that (-)-botryodiplodin from both natural and synthesized sources caused similar harmful effects on soybean leaf discs, indicating its role in plant toxicity.
  • Additionally, experiments with soybean seedlings demonstrated that (-)-botryodiplodin negatively impacted root growth and structure, supporting its potential to promote fungal infection in healthy roots.
View Article and Find Full Text PDF

Charcoal rot disease, caused by the fungus , results in major economic losses in soybean production in southern USA. has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.

View Article and Find Full Text PDF

Encapsulating fungicides and/or insecticides in film-coatings applied to agronomic seeds has become a widely accepted method for enhancing seed germination and overall seedling health by protecting against many diseases and early-season insect pests. Despite advancements in seed film-coating technologies, abrasion of the seed coating can occur during handling and mechanical planting operations, resulting in variable amounts of detached fragments entering the soil. The present study investigated the degradation in soil of these plastic-like, small-sized fragments, referred to here as microplastic coating fragments.

View Article and Find Full Text PDF

Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed.

View Article and Find Full Text PDF

N-acetyl-2-aminofluorene (AAF) is a procarcinogen used widely in physiological investigations of chemical hepatocarcinogenesis. Its metabolic pathways have been described extensively, yet little is known about its biochemical processing, growth cycle expression, and pharmacological properties inside living hepatocytes-the principal cellular targets of this hepatocarcinogen. In this report, primary monolayer adult rat hepatocyte cultures and high specific-activity [ring G-3 H]-N-acetyl-2-aminofluorene were used to extend previous observations of metabolic activation of AAF by highly differentiated, proliferation-competent hepatocytes in long-term cultures.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have attracted great attention in biomedical fields due to their unique properties. However, there are few reports on clinical trial of these nanoparticles. In vivo, AuNPs face complex biological fluids containing abundant proteins, which challenge the prediction of their fate that is known as "bio-identity".

View Article and Find Full Text PDF

Aflatoxin contamination has a major economic impact on crop production in the southern United States. Reduction of aflatoxin contamination in harvested crops has been achieved by applying nonaflatoxigenic biocontrol Aspergillus flavus strains that can out-compete wild aflatoxigenic A. flavus, reducing their numbers at the site of application.

View Article and Find Full Text PDF
Article Synopsis
  • A study explored using a new sprayable bioplastic containing biocontrol strains of Aspergillus flavus to reduce aflatoxin in corn plants by applying it directly to leaves.
  • The results showed that this formulation effectively adhered to leaf surfaces and could decrease aflatoxin contamination in harvested corn by up to 89% in certain regions.
  • The research concluded that treating the soil is unnecessary for effective biocontrol, making this leaf application a viable strategy for managing aflatoxin contamination in corn.
View Article and Find Full Text PDF

Corn infected with Ustilago maydis (common smut) produces galls that are valued as a delicacy in some cultures. During a 4-year period, aflatoxin levels in asymptomatic kernels of smutted ears were, on average, 45-fold higher than in kernels harvested from smut-free control ears and 99-fold higher than in smut galls. Aflatoxin levels in smut galls were lower than in kernels of smut-free control corn in all years combined.

View Article and Find Full Text PDF

A newly isolated fungus Penicillium verruculosum SG was evaluated for the production and characterization of bioactive colored secondary metabolites using solid-state fermentation along with their cytotoxic activities against normal and cancer cell lines. Logical fragmentation pattern following column chromatography, thin layer chromatography and liquid chromatography and mass spectrometry of crude culture filtrate of fungus revealed the presence of different polyketide pigments and other bioactive compounds. Cytotoxicity of the selected colored fractions of fungal filtrate containing different compounds revealed IC50 (μg/ml) values ranging from 5 to 100.

View Article and Find Full Text PDF

Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to both plants and mammals. Simple trichothecenes, including type A (e.g.

View Article and Find Full Text PDF

Mycotoxin contamination levels in maize kernels are controlled by a complex set of factors including insect pressure, fungal inoculum potential, and environmental conditions that are difficult to predict. Methods are becoming available to control mycotoxin-producing fungi in preharvest crops, including Bt expression, biocontrol, and host plant resistance. Initial reports in the United States and other countries have associated Bt expression with reduced fumonisin, deoxynivalenol, and zearalenone contamination and, to a lesser extent, reduced aflatoxin contamination in harvested maize kernels.

View Article and Find Full Text PDF

Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990.

Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer.

View Article and Find Full Text PDF

Twelve simple sequence repeat (SSRs) loci were used to evaluate genetic diversity of 109 isolates of Macrophomina phaseolina collected from different geographical regions and host species throughout the United States (US). Genetic diversity was assessed using Nei's minimum genetic distance, and the usefulness of each locus was determined by calculating the polymorphism information content (PIC). A total of 98 alleles were detected and of these 31 were unique to individual genotypes.

View Article and Find Full Text PDF

Two methods of systemic gene delivery have been extensively explored, using the mouse as a model system: hydrodynamic delivery, wherein a DNA solution equivalent in volume to 10% of the mouse weight is injected intravenously in less than 10 sec, and condensation of DNA with polyethylenimine (PEI) for standard intravenous infusion. Our goal in this study was to evaluate quantitatively the kinetics of gene expression, using these two methods for delivery of Sleeping Beauty transposons. Transposons carrying a luciferase expression cassette were injected into mice either hydrodynamically or after condensation with PEI at a PEI nitrogen-to-DNA phosphate ratio of 7.

View Article and Find Full Text PDF