Proc Natl Acad Sci U S A
October 2016
Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods.
View Article and Find Full Text PDFUnlabelled: Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM).
View Article and Find Full Text PDFMost central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space.
View Article and Find Full Text PDFTrastuzumab is effective in the treatment of HER2/neu over-expressing breast cancer, but not all patients benefit from it. In vitro data suggest a role for HER3 in the initiation of signaling activity involving the AKT–mTOR pathway leading to trastuzumab insensitivity. We sought to investigate the potential of HER3 alone and in the context of p95HER2 (p95), a trastuzumab resistance marker, as biomarkers of trastuzumab escape.
View Article and Find Full Text PDFBackground: Lapatinib plus capecitabine is an effective treatment option for trastuzumab-refractory HER2-positive metastatic breast cancer. We have investigated the correlation between quantitative measures of HER2, p95HER2, and HER3 and treatment outcomes using lapatinib and capecitabine.
Methods: Total HER2 (H2T), p95HER2 (p95), and total HER3 (H3T) expression were quantified in formalin-fixed paraffin-embedded samples using the VeraTag assays.
The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis.
View Article and Find Full Text PDFAcid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the CNS, and activation of ASIC1a homomeric channels induces neuronal death after local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive.
View Article and Find Full Text PDFWe report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies.
View Article and Find Full Text PDFThe acid-sensing ion channels (ASICs) are proton-gated cation channels activated when extracellular pH declines. In rodents, the Accn2 gene encodes transcript variants ASIC1a and ASIC1b, which differ in the first third of the protein and display distinct channel properties. In humans, ACCN2 transcript variant 2 (hVariant 2) is homologous to mouse ASIC1a.
View Article and Find Full Text PDFBackground: Only a portion of breast cancer patients currently selected for trastuzumab therapy respond.
Methods: Using a novel assay (HERmark) to quantify total human epidermal growth factor receptor 2 (HER2) expression, the authors examined outcomes in 102 trastuzumab-treated metastatic breast cancer patients previously assessed as immunohistochemistry (IHC) 3+ by local but not central IHC, or fluorescence in situ hybridization (FISH) positive, and then retested by central FISH.
Results: Of 102 MBC patients previously scored as IHC 3+ or 2+/FISH-positive and treated with trastuzumab-containing regimens, 98 had both central FISH and HER2 total expression values.
The accuracy and reliability of immunohistochemical analysis and in situ hybridization for the assessment of HER2 status remains a subject of debate. We developed a novel assay (HERmark Breast Cancer Assay, Monogram Biosciences, South San Francisco, CA) that provides precise quantification of total HER2 protein expression (H2T) and HER2 homodimers (H2D) in formalin-fixed, paraffin-embedded tissue specimens. H2T and H2D results of 237 breast cancers were compared with those of immunohistochemical studies and fluorescence in situ hybridization (FISH) centrally performed at the Mayo Clinic, Rochester, MN.
View Article and Find Full Text PDFAcid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-activated currents in cortical neurons.
View Article and Find Full Text PDFThe acid-sensing ion channels (ASICs) open in response to extracellular acidic pH, and individual subunits display differential sensitivity to protons and calcium. ASIC1a acts as a high affinity proton sensor, whereas ASIC2a requires substantially greater proton concentrations to activate. Using chimeras composed of ASIC1a and ASIC2a, we determined that two regions of the extracellular domain (residues 87-197 and 323-431) specify the high affinity proton response of ASIC1a.
View Article and Find Full Text PDFThe acid-sensing ion channels (ASICs) are proton-gated, voltage-insensitive cation channels expressed throughout the nervous system. ASIC1a plays a role in learning, pain, and fear-related behaviors. In addition, activation of ASIC1a during prolonged acidosis following cerebral ischemia induces neuronal death.
View Article and Find Full Text PDF