Parkinson's disease (PD), the second most common neurodegenerative disorder, is etiologically heterogeneous, with most cases thought to arise from a combination of environmental factors and genetic predisposition; about 10% of cases are caused by single gene mutations. While neurotoxin models replicate many of the key behavioral and neurological features, they often have limited relevance to human exposures. Genetic models replicate known disease-causing mutations, but are mostly unsuccessful in reproducing major features of PD.
View Article and Find Full Text PDFGene transfer to the central nervous system provides powerful methodology for the study of gene function and gene-environment interactions in vivo, in addition to a vehicle for the delivery of therapeutic transgenes for gene therapy. The aim of the present study was to determine patterns of tropism exhibited by pseudotyped lentiviral vectors in the rat substantia nigra, in order to evaluate their utility for gene transfer in experimental models of Parkinson's disease. Isogenic lentiviral vector particles encoding a GFP reporter were pseudotyped with envelope glycoproteins derived from vesicular stomatitis virus (VSV), Mokola virus (MV), lymphocytic choriomeningitis virus (LCMV), or Moloney murine leukemia virus (MuLV).
View Article and Find Full Text PDF