Over the past decades, several strategies for inducing and stabilizing secondary structure formation in peptides have been developed to increase their proteolytic stability and their binding affinity to specific interaction partners. Here, we report how our recently introduced chemoselective Pd-catalyzed cysteine allylation reaction can be extended to stapling and how the resulting alkene-containing staples themselves can be further modified to introduce additional probes into such stabilized peptides. The latter is demonstrated by introducing a fluorophore as well as a PEG moiety into different stapled peptides using bioorthogonal thiol-ene and Diels-Alder reactions.
View Article and Find Full Text PDFTransition metal-catalyzed reactions in aqueous media are experiencing a constant increase in interest. In homogenous catalysis the use of water as a solvent offers advantages in cost, safety, the possibility of two-phase catalysis and simplified separation strategies. In the life sciences, transition metal catalysis in aqueous systems enables the ligation or modification of biopolymers in buffer systems or even in their cellular environment.
View Article and Find Full Text PDFThe Pd-catalyzed -allylation of thiols with stable allylcarbonate and allylacetate reagents offers several advantages over established reactions for the formation of thioethers. We could demonstrate that Pd/BIPHEPHOS is a catalyst system which allows the transition metal-catalyzed -allylation of thiols with excellent -regioselectivity. Mechanistic studies showed that this reaction is reversible under the applied reaction conditions.
View Article and Find Full Text PDFThe prenylation of peptides and proteins is an important post-translational modification observed in vivo. We report that the Pd-catalyzed Tsuji-Trost allylation with a Pd/BIPHEPHOS catalyst system allows the allylation of Cys-containing peptides and proteins with complete chemoselectivity and high / regioselectivity. In contrast to recently established methods, which use non-native connections, the Pd-catalyzed prenylation produces the natural -prenylthioether bond.
View Article and Find Full Text PDFAbstract: In this contribution, we report synthetic strategies towards potential ligands for the study of binding differences between PhzE, the first enzyme in the biosynthesis of phenazines, and the related enzyme anthranilate synthase. The ligands were designed with the overriding goal to develop new antibiotics via downregulation of phenazine biosynthesis.
View Article and Find Full Text PDF