X-ray free-electron lasers (FELs) are state-of-the-art scientific tools capable to study matter on the scale of atomic processes. Since the initial operation of X-ray FELs more than a decade ago, several facilities with upgraded performance have been put in operation. Here we present the first lasing results of Athos, the soft X-ray FEL beamline of SwissFEL at the Paul Scherrer Institute in Switzerland.
View Article and Find Full Text PDFAt the Paul Scherrer Institute, two electron accelerator-based photon sources are in operation, namely a synchrotron source, the swiss light source (SLS), and an X-ray free-electron laser, SwissFEL. SLS has been operational since 2001 and SwissFEL since 2017. In this time, unique and world-leading scientific programs and methods have developed from the SLS and the SwissFEL in fields as diverse as macromolecular biology, chemical and physical sciences, imaging, and the electronic structure and behaviour of novel and complex materials.
View Article and Find Full Text PDFThe SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes.
View Article and Find Full Text PDFAn optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones.
View Article and Find Full Text PDF