In 1951, G. I. Taylor modeled swimming microorganisms by hypothesizing an infinite sheet in 2D moving in a viscous medium due to a wave passing through it.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Polymer association at liquid-liquid interfaces is a promising way to spontaneously obtain soft self-healing membranes. In the case of reversible bonding between two polymers, the macromolecules are mobile everywhere within the membrane and they can be absorbed into it at both boundaries due to binding to macromolecules of the other type. In this work, we develop the theoretical model of membrane growth based on these assumptions.
View Article and Find Full Text PDFWe explore the effect of poly(ethylene glycol) (PEG) molar mass on the intrinsic permeability and structural characteristics of poly(ethylene glycol) diacrylate PEGDA/PEG composite hydrogel membranes. We observe that by varying the PEG content and molar mass, we can finely adjust the water intrinsic permeability by several orders of magnitude. Notably, we show the existence of maximum water intrinsic permeability, already identified in a previous study to be located at the critical overlap concentration * of PEG chains, for the highest PEG molar mass studied.
View Article and Find Full Text PDFPockets of viscous fluid coalescing beneath an elastic sheet are encountered in a wide range of natural phenomena and engineering processes, spanning across scales. As the pockets merge, a bridge is formed with a height increasing as the sheet relaxes. We study the spatiotemporal dynamics of such an elastohydrodynamic coalescence process by combining experiments, lubrication theory, and numerical simulations.
View Article and Find Full Text PDFLift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e.
View Article and Find Full Text PDFHydrogels are promising systems for separation applications due to their structural characteristics (i.e., hydrophilicity and porosity).
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2023
Brownian motion is a central scientific paradigm. Recently, due to increasing efforts and interests towards miniaturization and small-scale physics or biology, the effects of confinement on such a motion have become a key topic of investigation. Essentially, when confined near a wall, a particle moves much slower than in the bulk due to friction at the boundaries.
View Article and Find Full Text PDFWe have studied the liquid-like response of the surface of vapor-deposited glassy films of polystyrene to the introduction of gold nanoparticles on the surface. The build-up of polymer material was measured as a function of time and temperature for both as-deposited films, as well as films that have been rejuvenated to become normal glasses cooled from the equilibrium liquid. The temporal evolution of the surface profile is well described by the characteristic power law of capillary-driven surface flows.
View Article and Find Full Text PDFWe study the diffusion of particles confined close to a single wall and in double-wall planar channel geometries where the local diffusivities depend on the distance to the boundaries. Displacement parallel to the walls is Brownian as characterized by its variance, but it is non-Gaussian having a nonzero fourth cumulant. Establishing a link with Taylor dispersion, we calculate the fourth cumulant and the tails of the displacement distribution for general diffusivity tensors along with potentials generated by either the walls or externally, for instance, gravity.
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2023
Freestanding thin polymer films with high molecular weights exhibit an anomalous decrease in the glass-transition temperature with film thickness. Specifically, in such materials, the measured glass-transition temperature evolves in an affine way with the film thickness, with a slope that weakly depends on the molecular weight. De Gennes proposed a sliding mechanism as the hypothetical dominant relaxation process in these systems, where stress kinks could propagate in a reptation-like fashion through so-called bridges, i.
View Article and Find Full Text PDFThe dispersive spreading of microscopic particles in shear flows is influenced both by advection and thermal motion. At the nanoscale, interactions between such particles and their confining boundaries become unavoidable. We address the roles of electrostatic repulsion and absorption on the spatial distribution and dispersion of charged nanoparticles in near-surface shear flows, observed under evanescent illumination.
View Article and Find Full Text PDFWe study the spreading of droplets in a near-critical phase-separated liquid mixture, using a combination of experiments, lubrication theory and finite-element numerical simulations. The classical Tanner's law describing the spreading of viscous droplets is robustly verified when the critical temperature is neared. Furthermore, the microscopic cut-off length scale emerging in this law is obtained as a single free parameter for each given temperature.
View Article and Find Full Text PDFIt is nearly impossible to separate two interleaved phonebooks by pulling their spines. The very slight force exerted by the outer sheets of the assembly is amplified as the exponential of the square of the number of sheets, meaning that even a small number of sheets can create a highly resistant system. We present a systematic and detailed study of the influences of the normal external force and the geometrical parameters of the booklets on the assembly strength.
View Article and Find Full Text PDFPresent environmental issues force the research to explore radically new concepts in sustainable and renewable energy production. In the present work, a functional fluid consisting of a stable colloidal suspension of maghemite magnetic nanoparticles in water was characterized from the points of view of thermoelectrical and optical properties, to evaluate its potential for direct electricity generation from thermoelectric effect enabled by the absorption of sunlight. These nanoparticles were found to be an excellent solar radiation absorber and simultaneously a thermoelectric power-output enhancer with only a very small volume fraction when the fluid was heated from the top.
View Article and Find Full Text PDFComplexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process, but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA (polypropylene oxide-polymetacrylic acid) membranes at a flat liquid-liquid interface.
View Article and Find Full Text PDFWe investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions.
View Article and Find Full Text PDFGravity-driven flows of granular matter are involved in a wide variety of situations, ranging from industrial processes to geophysical phenomena, such as avalanches or landslides. These flows are characterized by the coexistence of solid and fluid phases, whose stability is directly related to the erosion and sedimentation occurring at the solid-fluid interface. To describe these mechanisms, we build a microscopic model involving friction, geometry, and a nonlocal cooperativity emerging from the propagation of collisions.
View Article and Find Full Text PDFWe present experiments to study the relaxation of a nanoscale cylindrical perturbation at one of the two interfaces of a thin viscous freestanding polymeric film. Driven by capillarity, the film flows and evolves toward equilibrium by first symmetrizing the perturbation between the two interfaces and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented, which accounts for both the vertical and lateral flows and which highlights the symmetry in the system.
View Article and Find Full Text PDFPreviously, we developed a minimal model based on random cooperative strings for the relaxation of supercooled liquids in the bulk and near free interfaces, and we recovered some key experimental observations. In this article, after recalling the main ingredients of the cooperative string model, we study the effective glass transition and surface mobility of various experimentally relevant confined geometries: freestanding films, supported films, spherical particles, and cylindrical particles, with free interfaces and/or passive substrates. Finally, by canceling and restarting any cooperative-chain realization reaching the boundary with a smaller number of steps than the bulk cooperativity, we account for a purely attractive substrate, and explore the impact of the latter in the previous geometries.
View Article and Find Full Text PDFA submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to a combination of an elastohydrodynamic torque generated by flow in the variable gap, and the viscous friction on the edges of the finite-length cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder, the angle of the incline, and the deformability of the substrate, which we express in terms of a single scaled compliance parameter.
View Article and Find Full Text PDFWe present the first direct measurement of the elastohydrodynamic lift force acting on a sphere moving within a viscous liquid, near and along a soft substrate under nanometric confinement. Using atomic force microscopy, the lift force is probed as a function of the gap size, for various driving velocities, viscosities, and stiffnesses. The force increases as the gap is reduced and shows a saturation at small gap.
View Article and Find Full Text PDFMotivated by recent experimental studies probing (i) the existence of a mobile layer at the free surface of glasses and (ii) the capillary leveling of polymer nanofilms, we study the evolution of square-wave patterns at the free surface of a generic glass-forming binary Lennard-Jones mixture over a wide temperature range, by means of molecular dynamics simulations. The pattern's amplitude is monitored, and the associated decay rate is extracted. The evolution of the latter as a function of temperature exhibits a crossover between two distinct behaviors, over a temperature range typically bounded by the glass-transition temperature and the mode-coupling critical temperature.
View Article and Find Full Text PDFThe influence of the magnetic field on the Seebeck coefficient (Se) was investigated in dilute magnetic nanofluids (ferrofluids) composed of maghemite magnetic nanoparticles dispersed in dimethyl-sulfoxide (DMSO). A 25% increase in the Se value was found when the external magnetic field was applied perpendicularly to the temperature gradient, reminiscent of an increase in the Soret coefficient ( , concentration gradient) observed in the same fluids. In-depth analysis of experimental data, however, revealed that different mechanisms are responsible for the observed magneto-thermoelectric and -thermodiffusive phenomena.
View Article and Find Full Text PDFEncapsulation of chemicals using polymer membranes enables control of their transport and delivery for applications such as agrochemistry or detergency. To rationalize the design of polymer capsules, it is necessary to understand how the membranes' mechanical properties control the transport and release of the cargo. In this article, we use microfluidics to produce model polymer capsules and study in situ their behavior in controlled divergent flows.
View Article and Find Full Text PDF