Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry.
View Article and Find Full Text PDFThe Laser Interferometer Space Antenna (LISA) and its metrology chain have to fulfill stringent performance requirements to enable the space-based detection of gravitational waves. This implies the necessity of performance verification methods. In particular, the extraction of the interferometric phase, implemented by a phasemeter, needs to be probed for linearity and phase noise contributions.
View Article and Find Full Text PDFA photoreceiver (PR) is required for the opto-electrical conversion of signals in intersatellite laser interferometers. Noise sources that originate or couple in the PR reduce the system carrier-to-noise-density, which is often represented by its phase noise density. In this work, we analyze the common noise sources in a PR used for space-based interferometry.
View Article and Find Full Text PDFExperiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm.
View Article and Find Full Text PDFPrecision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of μrad/√Hz at frequencies between 0.1 mHz and 1 Hz.
View Article and Find Full Text PDFWe present the development of an advanced phasemeter for the deep phase modulation interferometry technique. This technique aims for precise length measurements with a high dynamic range using little optical hardware. The advanced phasemeter uses fast ADCs and an FPGA to implement a design of multiple single-bin Fourier transforms running at high sampling rates.
View Article and Find Full Text PDF