Publications by authors named "Thomas S Becker"

Ground state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ.

View Article and Find Full Text PDF

The neurodegenerative disease Machado-Joseph disease (MJD), also known as spinocerebellar ataxin-3, affects neurons of the brain and spinal cord, disrupting control of the movement of muscles. We have successfully established the first transgenic zebrafish () model of MJD by expressing human ataxin-3 protein containing either 23 glutamines (23Q, wild-type) or 84Q (MJD-causing) within neurons. Phenotypic characterization of the zebrafish (male and female) revealed that the ataxin-3-84Q zebrafish have decreased survival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin-3 cleavage fragments and motor impairment.

View Article and Find Full Text PDF

Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene.

View Article and Find Full Text PDF

The differential distribution of lipids between apical and basolateral membranes is necessary for many epithelial cell functions, but how this characteristic membrane organization is integrated within the polarity network during ductal organ development is poorly understood. Here we quantified membrane order in the gut, kidney and liver ductal epithelia in zebrafish larvae at 3-11 days post fertilization (dpf) with Laurdan 2-photon microscopy. We then applied a combination of Laurdan imaging, antisense knock-down and analysis of polarity markers to understand the relationship between membrane order and apical-basal polarity.

View Article and Find Full Text PDF
Article Synopsis
  • Protein-coding mutations in the ARX gene lead to various forms of intellectual disability and epilepsy, while non-coding variations are associated with milder conditions like non-syndromic ID and autism.
  • Researchers compiled data on patients with ARX genomic region duplications to explore genetic mechanisms behind neurodevelopmental defects, finding that disturbances are not solely due to increased gene dosage.
  • Identification of ARX enhancers regulating brain region-specific expression revealed how long-range regulatory changes can affect neuronal development and contribute to neuropsychiatric diseases.
View Article and Find Full Text PDF

Single Nucleotide Polymorphisms in FTO intron 1 have been associated with obesity risk, leading to the hypothesis that FTO is the obesity-related gene. However, other studies have shown that the FTO gene is part of the regulatory domain of the neighboring IRX3 gene and that enhancers in FTO intron 1 regulate IRX3. While Irx3 activity was shown to be necessary in the hypothalamus for the metabolic function of Irx3 in mouse, no enhancers with hypothalamic activity have been demonstrated in the risk-associated region within FTO.

View Article and Find Full Text PDF

Correct morphogenesis and differentiation are critical in development and maintenance of the lens, which is a classic model system for epithelial development and disease. Through germline genomic analyses in patients with lens and eye abnormalities, we discovered functional mutations in the Signal Induced Proliferation Associated 1 Like 3 (SIPA1L3) gene, which encodes a previously uncharacterized member of the Signal Induced Proliferation Associated 1 (SIPA1 or SPA1) family, with a role in Rap1 signalling. Patient 1, with a de novo balanced translocation, 46,XY,t(2;19)(q37.

View Article and Find Full Text PDF

During early development of the central nervous system (CNS), a subset of yolk-sac derived myeloid cells populate the brain and provide the seed for the microglial cell population, which will self-renew throughout life. As development progresses, individual microglial cells transition from a phagocytic amoeboid state through a transitional morphing phase into the sessile, ramified, and normally nonphagocytic microglia observed in the adult CNS under healthy conditions. The molecular drivers of this tissue-specific maturation profile are not known.

View Article and Find Full Text PDF

Although zebrafish is used to model human diseases through mutational and morpholino-based knockdown approaches, there are currently no robust transgenic knockdown tools. Here we investigate the knockdown efficiency of three synthetic miRNA-expressing backbones and show that these constructs can downregulate a sensor transgene with different degrees of potency. Using this approach, we reproduce spinal muscular atrophy (SMA) in zebrafish by targeting the smn1 gene.

View Article and Find Full Text PDF

Enhancers can regulate the transcription of genes over long genomic distances. This is thought to lead to selection against genomic rearrangements within such regions that may disrupt this functional linkage. Here we test this concept experimentally using the human X chromosome.

View Article and Find Full Text PDF

miR218-1 and miR218-2 are embedded in introns of SLIT2 and SLIT3, respectively, an arrangement conserved throughout vertebrate genomes. Both miR218 genes are predicted to be transcribed in the same orientation as their host genes and were assumed to be spliced from Slit2/3 primary transcripts. In zebrafish miR218 is active in cranial nerve motor nuclei and spinal cord motor neurons, while slit2 and slit3 are expressed predominantly in the midline.

View Article and Find Full Text PDF

The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability.

View Article and Find Full Text PDF

More than 80 years ago, Pio Del Rio-Hortega recognized that one of the "main controversial points in regard to the microglia" is "whether it belongs to the reticulo-endothelial system [i.e. monocytes and macrophages] and possesses the ordinary characteristics of this system or has a more specialized function.

View Article and Find Full Text PDF

Abstract Our zebrafish colony experienced a period of increased mortality rate of 6.5 times more deaths per month in a colony of over 13,000 zebrafish (Danio rerio), which developed over 3 months. We observed that before death, affected fish appeared emaciated, often with an abdominal bulge.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. The subcellular mechanisms of DMD remain poorly understood and there is currently no curative treatment available. Using a Caenorhabditis elegans model for DMD as a pharmacologic and genetic tool, we found that cyclosporine A (CsA) reduces muscle degeneration at low dose and acts, at least in part, through a mitochondrial cyclophilin D, CYN-1.

View Article and Find Full Text PDF

We detail an approach for the identification of human tissue-specific transcriptional enhancers involving three steps: delineation of search space around a locus or target gene, in silico identification and size definition of putative candidate sequences, and testing through several independent genomic insertions in a transgenic zebrafish reporter assay. Candidate sequences are defined through evolutionary conservation, transcription factor binding and chromatin marks (e.g.

View Article and Find Full Text PDF

Background: Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood.

View Article and Find Full Text PDF

Microglia, the resident macrophage precursors of the brain, are necessary for the maintenance of tissue homeostasis and activated by a wide range of pathological stimuli. They have a key role in immune and inflammatory responses. Early microglia stem from primitive macrophages, however the transition from early motile forms to the ramified mature resident microglia has not been assayed in real time.

View Article and Find Full Text PDF

The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages.

View Article and Find Full Text PDF

Greying with age in horses is an autosomal dominant trait, characterized by hair greying, high incidence of melanoma and vitiligo-like depigmentation. Previous studies have revealed that the causative mutation for this phenotype is a 4.6-kb intronic duplication in STX17 (Syntaxin 17).

View Article and Find Full Text PDF

Whole exome sequencing and, to a lesser extent, genome-wide association studies, have provided unprecedented advances in identifying genes and candidate genomic regions involved in the development of human disease. Further progress will come from sequencing the entire genome of multiple patients and normal controls to evaluate overall mutational burden and disease risk. A major challenge will be the interpretation of the resulting data and distinguishing true pathogenic mutations from rare benign variants.

View Article and Find Full Text PDF

Rapid technological advances over the past decade have moved us closer to a high throughput molecular approach to neurobiology, where we see the merging of neurogenetics, genomics, physiology, imaging and pharmacology. This is the case more in zebrafish than in any other model organism commonly used. Recent improvements in the generation of transgenic zebrafish now allow genetic manipulation and live imaging of neuronal development and function in early embryonic, larval, and adult animals.

View Article and Find Full Text PDF

Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis.

View Article and Find Full Text PDF