Under the effect of global change, management of cyanobacterial proliferation becomes increasingly pressing. Given the importance of interactions within microbial communities in aquatic ecosystems, a handful of studies explored the potential relations between cyanobacteria and their associated bacterial community (i.e.
View Article and Find Full Text PDFThe predicted increase in the intensity and frequency of drought events associated with global climate change will impose severe hydrological stress to freshwater ecosystems, potentially altering their structure and function. Unlike freshwater communities' direct response to drought, their post-drought recovery capacities remain understudied despite being an essential component driving ecosystem resilience. Here we used tank bromeliad as model ecosystem to emulate droughts of different duration and then assess the recovery capacities of ecosystem structure and function.
View Article and Find Full Text PDFConsumer metabolism controls the energy uptake from the environment and its allocation to biomass production. In natural ecosystems, available energy in food often fails to predict biomass production which is also (co)limited by the relative availability of various dietary compounds. To date, the link between energy metabolism and the effects of food chemical composition on biomass production remains elusive.
View Article and Find Full Text PDFTemperature and nutrient availability, which are major drivers of consumer performance, are dramatically affected by global change. To date, there is no consensus on whether warming increases or decreases consumer needs for dietary carbon (C) relatively to phosphorus (P), thus hindering predictions of secondary production responses to global change. Here, we investigate how the dietary C:P ratio optimising consumer growth (TER : Threshold Elemental Ratio) changes along temperature gradients by combining a temperature-dependent TER model with growth experiments on Daphnia magna.
View Article and Find Full Text PDFUnderstanding the determinants of metabolism is a core ecological topic since it permits to link individual energetic requirements to the ecology of communities and ecosystems. Yet, besides temperature, metabolic responses to environmental factors remain poorly understood. For example, it is commonly assumed that dietary stoichiometric constraints increase metabolism of small invertebrates despite scarce experimental support.
View Article and Find Full Text PDF