Publications by authors named "Thomas Roitsch"

The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity.

View Article and Find Full Text PDF

The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the impact of pathogenic strains on common bean plants, exploring how they use a Type III Secretion System to inject effectors that disturb plant defense mechanisms.
  • The experiment examined the transcriptomic responses of one susceptible (Flavert) and one resistant (Vezer) bean cultivar after inoculation with both a virulent strain and its T3SS-defective mutant.
  • The results yielded a comprehensive dataset with 36,978 transcripts available in the NCBI Gene Expression Omnibus for further research on how these bacterial effectors influence plant cellular functions.
View Article and Find Full Text PDF

This study investigated the germination response to temperature of seeds of nine ecotypes. They are characterized by a similar temperature dependency of seed germination, and 10 °C and 29 °C were found to be suboptimal low and high temperatures for all nine ecotypes, even though they originated from regions with diverse climates. We tested the potential of four PGPR strains from the genera and to stimulate seed germination in the two ecotypes under these suboptimal conditions.

View Article and Find Full Text PDF

Flavescence dorée (FD) is a phytoplasma disease transmitted by insects, causing severe damage to vineyards across Europe. Infected plants cannot be cured and must be removed to prevent further spread. Different grapevine cultivars show varying susceptibility to FD, and some exhibit symptom remission, known as recovery, although the mechanisms behind this are unclear.

View Article and Find Full Text PDF

Seed inoculation with entomopathogenic fungi (EPF) causes plant-mediated effects against arthropod herbivores, but the responses vary among EPF isolates. We used a wheat model system with three isolates representing Beauveria bassiana and Metarhizium spp. causing either negative or positive effects against the aphid Rhopalosiphum padi.

View Article and Find Full Text PDF

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv.

View Article and Find Full Text PDF

Alterations in plant metabolism play a key role in the complex plant-pathogen interactions. However, there is still a lack of knowledge about the connection between changes in primary and specialized metabolism and the plant defense against diseases that impact crops. Thus, we aim to study the metabolic reprograming in plants upon infection by pv.

View Article and Find Full Text PDF

The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ' Phytoplasma solani' are unknown. Six putative pathogenicity factors/effectors from six different strains of '. P.

View Article and Find Full Text PDF

Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded.

View Article and Find Full Text PDF

The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards.

View Article and Find Full Text PDF

High-throughput profiling of key enzyme activities of carbon, nitrogen, and antioxidant metabolism is emerging as a valuable approach to integrate cell physiological phenotyping into a holistic functional phenomics approach. However, the analyses of the large datasets generated by this method represent a bottleneck, often keeping researchers from exploiting the full potential of their studies. We address these limitations through the exemplary application of a set of data evaluation and visualization tools within a case study.

View Article and Find Full Text PDF

Interannual and local fluctuations in wheat crop yield are mostly explained by abiotic constraints. Heatwaves and drought, which are among the top stressors, commonly co-occur, and their frequency is increasing with global climate change. High-throughput methods were optimized to phenotype wheat plants under controlled water deficit and high temperature, with the aim to identify phenotypic traits conferring adaptative stress responses.

View Article and Find Full Text PDF

Endophytic fungi that colonize the plant root live in an environment with relative high concentrations of different sugars. Analyses of genome sequences indicate that such endophytes can secrete carbohydrate-related enzymes to compete for these sugars with the surrounding plant cells. We hypothesized that typical plant sugars can be used as carbon source by root endophytes and that these sugars also serve as signals to induce the expression and secretion of glycolytic enzymes.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacteria (PGPR) are known for exerting beneficial effects on plant growth and tolerance to plant pathogens. However, their specific role in mediating protection against abiotic stress remains underexplored. The aim of this study was to characterise the ability of the cytokinin-producing beneficial bacterium Pseudomonas fluorescens G20-18 to enhance tomato growth and boost tolerance to drought stress.

View Article and Find Full Text PDF

Necrotic and chlorotic symptoms induced during Pyrenophora teres infection in barley leaves indicate a compatible interaction that allows the hemi-biotrophic fungus Pyrenophora teres to colonise the host. However, it is unexplored how this fungus affects the physiological responses of resistant and susceptible cultivars during infection. To assess the degree of resistance in four different cultivars, we quantified visible symptoms and fungal DNA and performed expression analyses of genes involved in plant defence and ROS scavenging.

View Article and Find Full Text PDF

Here, we report the complete genome sequence of the cytokinin-producing plant growth-promoting strain Pseudomonas fluorescens G20-18. The complete genome assembly resulted in a single, circular chromosome of 6.48 Mbp and harbors several secondary metabolite biosynthesis gene clusters that are potentially involved in its plant growth-promoting function.

View Article and Find Full Text PDF

Two wheat genotypes forming high and low biomass (HB and LB), exhibiting differential expression of an isoflavone reductase-like (IRL) gene, and resulting in contrasting grain yield under heat stress field conditions, were analyzed in detail for their responses under controlled heat and elevated CO2 conditions. Significant differences in IRL expression between the two lines were hypothesized to be the basis of their differential performance under the tested conditions and their stress tolerance potential. By a holistic approach integrating advanced cell physiological phenotyping of the antioxidative and phytohormone system in spikes and leaves with measurements of ecophysiological and agronomic traits, the genetic differences of the genotypes in IRL expression were assessed.

View Article and Find Full Text PDF

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ' Phytoplasma solani', but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv.

View Article and Find Full Text PDF

Understanding temporal biological phenomena is a challenging task that can be approached using network analysis. Here, we explored whether network reconstruction can be used to better understand the temporal dynamics of bois noir, which is associated with ' Phytoplasma solani', and is one of the most widespread phytoplasma diseases of grapevine in Europe. We proposed a methodology that explores the temporal network dynamics at the community level, i.

View Article and Find Full Text PDF

is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from . Laboratory screenings of a bacterial strain collection yielded several and strains that improved seed germination and produced indole-3-acetic acid.

View Article and Find Full Text PDF

Plants are increasingly exposed to events of elevated temperature and water deficit, which threaten crop productivity. Understanding the ability to rapidly recover from abiotic stress, restoring carbon assimilation and biomass production, is important to unravel crop climate resilience. This study compared the photosynthetic performance of two Triticum aestivum L.

View Article and Find Full Text PDF

Background: To improve our understanding about the physiological mechanism of grain yield reduction at anthesis, three spring wheat genotypes [L (advanced line), L (Vorobey) and L (Punjab-11)] having contrasting yield potential under drought in field were investigated under controlled greenhouse conditions, drought stress was imposed at anthesis stage by withholding irrigation until all plant available water was depleted, while well-watered control plants were kept at 95% pot water holding capacity.

Results: Compared to genotype L and L, pronounced decrease in grain number (NGS), grain yield (GY) and harvest index (HI) were found in genotype L, mainly due to its greater kernel abortion (KA) under drought. A significant positive correlation of leaf monodehydroascorbate reductase (MDHAR) with both NGS and HI was observed.

View Article and Find Full Text PDF