The tandem hydroformylation-aldol condensation (tandem HF-AC) reaction offers an efficient synthetic route to the synthesis of industrially relevant products. The addition of Zn-MOF-74 to the cobalt-catalyzed hydroformylation of 1-hexene enables tandem HF-AC under milder pressure and temperature conditions than the aldox process, where zinc salts are added to cobalt-catalyzed hydroformylation reactions to promote aldol condensation. The yield of the aldol condensation products increases by up to 17 times compared to that of the homogeneous reaction without MOF and up to 5 times compared to the aldox catalytic system.
View Article and Find Full Text PDFThe introduction of structural defects in metal-organic frameworks (MOFs), often achieved through the fractional use of defective linkers, is emerging as a means to refine the properties of existing MOFs. These linkers, missing coordination fragments, create unsaturated framework nodes that may alter the properties of the MOF. A property-targeted utilization of this approach demands an understanding of the structure of the defect-engineered MOF.
View Article and Find Full Text PDFFinding heterogeneous catalysts that are superior to homogeneous ones for selective catalytic transformations is a major challenge in catalysis. Here, we show how micropores in metal-organic frameworks (MOFs) push homogeneous catalytic reactions into kinetic regimes inaccessible under standard conditions. Such property allows branched selectivity up to 90% in the Co-catalysed hydroformylation of olefins without directing groups, not achievable with existing catalysts.
View Article and Find Full Text PDF