The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival.
View Article and Find Full Text PDFApis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A.
View Article and Find Full Text PDFTo combat an increasing abundance of sucking insect pests, >40 pesticides are currently recommended and frequently used as foliar sprays on row crops, especially cotton. Foraging honey bees may be killed when they are directly exposed to foliar sprays, or they may take contaminated pollen back to hives that maybe toxic to other adult bees and larvae. To assess acute toxicity against the honey bee, we used a modified spray tower to simulate field spray conditions to include direct whole-body exposure, inhalation, and continuing tarsal contact and oral licking after a field spray.
View Article and Find Full Text PDFVarroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays.
View Article and Find Full Text PDFThe honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%).
View Article and Find Full Text PDFThe viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the Deformed wing virus (DWV) level in IHB inoculated with one or two foundress Varroa increased to about 10(3) or 10(5) fold the levels of their uninfested brood. In contrast, POL (10(2) or 10(4) fold) and RHB (10(2) or l0(4) fold) supported a lower increase in DWV levels.
View Article and Find Full Text PDFVarroa destructor (Anderson and Trueman) trapped on bottom boards were assessed as indirect measurements of colony mite population differences and potential indicators of mite resistance in commercial colonies of Russian and Italian honey bees (Apis mellifera L.) by using 35 candidate measurements. Measurements included numbers of damaged and nondamaged younger mites, nymphs, damaged and nondamaged older mites, fresh mites, and all mites, each as a proportion of total mites in the colonies and as a proportion of all trapped mites or all trapped fresh mites.
View Article and Find Full Text PDFThis study assessed the response of Apis mellifera to brood deliberately infested with Tropilaelaps mercedesae. The reproductive success of T. mercedesae in mite-inoculated and naturally infested brood was also compared.
View Article and Find Full Text PDFVarroa destructor (Anderson and Truman) trapped on bottom boards were assessed as indirect measurements of colony mite populations and mite fall in colonies of Russian and Italian honey bees using 29 candidate measurements. Measurements included damaged and nondamaged younger mites, damaged and nondamaged older mites, fresh mites and all mites, each as a proportion of total mites in the colonies and as a proportion of all trapped mites or all trapped fresh mites. Regression analyses were used to determine the relationships of these candidate measurements to the number of mites in the colonies.
View Article and Find Full Text PDFThis study evaluated for the first time the grooming response of honey bees to Varroa mites of different ages and reproductive statuses in the laboratory. Plastic cages containing a section of dark comb and about 200 bees were inoculated with groups of four classes of mites: gravid, phoretic foundresses, phoretic daughters and a combination of gravid and phoretic foundress mites. Each cage received 20 mites belonging to one of these classes.
View Article and Find Full Text PDFTwo types of honey bees, Apis mellifera L. (Hymenoptera: Apidae), bred for resistance to Varroa destructor Anderson & Trueman were evaluated for performance when used in migratory crop pollination. Colonies of Russian honey bees (RHB) and outcrossed bees with Varroa-sensitive hygiene (VSH) were managed without miticide treatments and compared with colonies of Italian honey bees that served as controls.
View Article and Find Full Text PDFNumerous methods exist for molecular-based detection of Nosema ceranae. Here we determine location of parasite loads, the optimal tissue for pathogen detection, and the likely sources of variability among assays. Bee washes and head/thorax samples revealed substantial N.
View Article and Find Full Text PDFA high proportion of nonreproductive (NR) Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae), is commonly observed in honey bee colonies displaying the varroa sensitive hygienic trait (VSH). This study was conducted to determine the influence of brood removal and subsequent host reinvasion of varroa mites on mite reproduction. We collected foundress mites from stages of brood (newly sealed larvae, prepupae, white-eyed pupae, and pink-eyed pupae) and phoretic mites from adult bees.
View Article and Find Full Text PDFOlfactory cues released by adult bees, brood, pollen, and honey from a honey bee, Apis mellifera L., colony are the primary stimuli that guide the beetle Aethina tumida Murray (Coleoptera: Nitidulidae) to host colonies. To investigate the response of adult A.
View Article and Find Full Text PDFA genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used.
View Article and Find Full Text PDFThe incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples.
View Article and Find Full Text PDFMaintenance of genetic diversity among breeding lines is important in selective breeding and stock management. The Russian Honey Bee Breeding Program has strived to maintain high levels of heterozygosity among its breeding lines since its inception in 1997. After numerous rounds of selection for resistance to tracheal and varroa mites and improved honey production, 18 lines were selected as the core of the program.
View Article and Find Full Text PDFTo compare resistance to small hive beetles (Coleoptera: Nitidulidae) between Russian and commercial Italian honey bees (Hymenoptera: Apidae), the numbers of invading beetles, their population levels through time and small hive beetle reproduction inside the colonies were monitored. We found that the genotype of queens introduced into nucleus colonies had no immediate effect on small hive beetle invasion. However, the influence of honey bee stock on small hive beetle invasion was pronounced once test bees populated the hives.
View Article and Find Full Text PDFThe pattern of inheritance of tracheal mite resistance in selected Russian bees was determined in bioassays and in samples from field colonies. Resistant colonies of Russian origin and colonies selected for high susceptibility in the United States were used to generate divergent parental populations. Seven groups of F1 colonies were produced by crossing queens and drones from these selected resistant Russian and selected susceptible populations.
View Article and Find Full Text PDFEarlier studies showed that Russian honey bees support slow growth of varroa mite population. We studied whether or not comb type influenced varroa reproduction in both Russian and Italian honey bees, and whether Russian bees produced comb which inhibited varroa reproduction. The major differences found in this study concerned honey bee type.
View Article and Find Full Text PDFHoney bee, Apis mellifera L. (Hymenoptera: Apidae), colonies infested by parasitic mites are more prone to suffer from a variety of stresses, including cold temperature. We evaluated the overwintering ability of candidate breeder lines of Russian honey bees, most of which are resistant to both Varroa destructor Anderson & Trueman and Acarapis woodi (Rennie), during 1999-2001.
View Article and Find Full Text PDFThe ectoparasitic mite, Varroa destructor, is the most destructive parasite of managed honeybee colonies worldwide. Since V. destructor transfers pathogens to honeybees, it may be adaptive for bees to respond to mite infestation by upregulating their immune responses.
View Article and Find Full Text PDFUntil recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses.
View Article and Find Full Text PDF