Publications by authors named "Thomas Rich"

Colorectal cancer is one of the top contributors to cancer-related deaths in the United States, with over 100,000 estimated cases in 2020 and over 50,000 deaths. The most common screening technique is minimally invasive colonoscopy using either reflected white light endoscopy or narrow-band imaging. However, current imaging modalities have only moderate sensitivity and specificity for lesion detection.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) technologies have enabled a range of experimental techniques and studies in the fluorescence microscopy field. Unfortunately, a drawback of many HSI microscope platforms is increased acquisition time required to collect images across many spectral bands, as well as signal loss due to the need to filter or disperse emitted fluorescence into many discrete bands. We have previously demonstrated that an alternative approach of scanning the fluorescence excitation spectrum can greatly improve system efficiency by decreasing light losses associated with emission filtering.

View Article and Find Full Text PDF

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms. Here we report a new Jurassic shuotheriid represented by two skeletal specimens.

View Article and Find Full Text PDF

The dual jaw joint of Morganucodon consists of the dentary-squamosal joint laterally and the articular-quadrate one medially. The articular-quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration.

View Article and Find Full Text PDF

The fossil record for Cretaceous birds in Australia has been limited to rare skeletal material, feathers, and two tracks, a paucity shared with other Gondwanan landmasses. Hence the recent discovery of 27 avian footprints and other traces in the Early Cretaceous (Barremian-Aptian, 128-120 Ma) Wonthaggi Formation of Victoria, Australia amends their previous rarity there, while also confirming the earliest known presence of birds in Australia and the rest of Gondwana. The avian identity of these tracks is verified by their tridactyl forms, thin digits relative to track lengths, wide divarication angles, and sharp claws; three tracks also have hallux imprints.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy.

View Article and Find Full Text PDF

Physiological function is regulated through cellular communication that is facilitated by multiple signaling molecules such as second messengers. Analysis of signal dynamics obtained from cell and tissue imaging is difficult because of intricate spatially and temporally distinct signals. Signal analysis tools based on static region of interest analysis may under- or overestimate signals in relation to region of interest size and location.

View Article and Find Full Text PDF

Monotremata is a clade of egg-lying mammals, represented by the living platypus and echidnas, which is endemic to Australia, and adjacent islands. Occurrence of basal monotremes in the Early Cretaceous of Australia has led to the consensus that this clade originated on that continent, arriving later to South America. Here we report on the discovery of a Late Cretaceous monotreme from southern Argentina, demonstrating that monotremes were present in circumpolar regions by the end of the Mesozoic, and that their distinctive anatomical features were probably present in these ancient forms as well.

View Article and Find Full Text PDF

Significance: Hyperspectral imaging (HSI) technologies offer great potential in fluorescence microscopy for multiplexed imaging, autofluorescence removal, and analysis of autofluorescent molecules. However, there are also associated trade-offs when implementing HSI in fluorescence microscopy systems, such as decreased acquisition speed, resolution, or field-of-view due to the need to acquire spectral information in addition to spatial information. The vast majority of HSI fluorescence microscopy systems provide spectral discrimination by filtering or dispersing the fluorescence emission, which may result in loss of emitted fluorescence signal due to optical filters, dispersive optics, or supporting optics, such as slits and collimators.

View Article and Find Full Text PDF

Systems engineering captures the desires and needs of the customer to conceptualize a system from the overall goal down to the small details prior to any physical development. While many systems projects tend to be large and complicated (i.e.

View Article and Find Full Text PDF

Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling.

View Article and Find Full Text PDF

Hyperspectral imaging technologies (HSI) have undergone rapid development since their beginning stages. While original applications were in remote sensing, other uses include agriculture, food safety and medicine. HSI has shown great utility in fluorescence microscopy for detecting signatures from many fluorescent molecules; however, acquisitions speeds have been slow due to light losses associated with spectral filtering.

View Article and Find Full Text PDF

A ubiquitous second messenger molecule, cAMP is responsible for orchestrating many different cellular functions through a variety of pathways. Fӧrster resonance energy transfer (FRET) probes have been used to visualize cAMP spatial gradients in pulmonary microvascular endothelial cells (PMVECs). However, FRET probes have inherently low signal-to-noise ratios; multiple sources of noise can obscure accurate visualization of cAMP gradients using a hyperspectral imaging system.

View Article and Find Full Text PDF

Studies of the cAMP signaling pathway have led to the hypothesis that localized cAMP signals regulate distinct cellular responses. Much of this work focused on measurement of localized cAMP signals using cAMP sensors based upon Fӧrster resonance energy transfer (FRET). FRET-based probes are comprised of a cAMP binding domain sandwiched between donor and acceptor fluorophores.

View Article and Find Full Text PDF

Ca and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations.

View Article and Find Full Text PDF

The types of injuries seen in combat action on a naval surface ship may be similar in many respects to the injuries seen in ground combat, and the principles of care for those injuries remain in large part the same. However, some contradistinctions in the care of combat casualties on a ship at sea must be highlighted, since this care may entail a number of unique challenges and different wounding patterns. This paper presents a scenario in which a guided missile destroyer is struck by a missile fired from an unmanned aerial vehicle operated by an undetermined hostile entity.

View Article and Find Full Text PDF

Second messenger signaling is required for cellular processes. We previously reported that extracellular vesicles (EVs) from stimulated cultured endothelial cells contain the biochemical second messenger, cAMP. In the current study, we sought to determine whether cAMP-enriched EVs induce second messenger signaling pathways in naïve recipient cells.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that is currently causing a pandemic and has been termed coronavirus disease (COVID-19). The elderly or those with preexisting conditions like diabetes, hypertension, coronary heart disease, chronic obstructive pulmonary disease, cerebrovascular disease, or kidney dysfunction are more likely to develop severe cases when infected. Patients with COVID-19 admitted to the ICU have higher mortality than non-ICU patients.

View Article and Find Full Text PDF

Quantitative assessment of cellular forces and motion advanced considerably over the last four decades. These advancements provided the framework to examine insightful mechanical signaling processes in cell culture systems. However, the field currently faces three problems: lack of quality standardization of the acquired data, technical errors in data analysis and visualization, and perhaps most importantly, the technology remains largely out of reach for common cell biology laboratories.

View Article and Find Full Text PDF

In the last 20 years tremendous progress has been made in the development of single cell cAMP sensors. Sensors are based upon cAMP binding proteins that have been modified to transduce cAMP concentrations into electrical or fluorescent readouts that can be readily detected using patch clamp amplifiers, photomultiplier tubes, or cameras. Here, we describe two complementary approaches for the detection and measurement of cAMP signals near the plasma membrane of cells using cyclic nucleotide (CNG) channel-based probes.

View Article and Find Full Text PDF

A variety of FRET probes have been developed to examine cAMP localization and dynamics in single cells. These probes offer a readily accessible approach to measure localized cAMP signals. However, given the low signal-to-noise ratio of most FRET probes and the dynamic nature of the intracellular environment, there have been marked limitations in the ability to use FRET probes to study localized signaling events within the same cell.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by decreased alveolar-capillary barrier function, pulmonary edema consisting of proteinaceous fluid, and inhibition of net alveolar fluid transport responsible for resolution of pulmonary edema. There is currently no pharmacotherapy that has proven useful to prevent or treat ARDS, and two trials using beta-agonist therapy to treat ARDS demonstrated no effect. Prior studies indicated that IL-8-induced heterologous desensitization of the beta2-adrenergic receptor (β -AR) led to decreased beta-agonist-induced mobilization of cyclic adenosine monophosphate (cAMP).

View Article and Find Full Text PDF

Capturing, storing, and sharing biological DNA parts data are integral parts of synthetic biology research. Here, we detail updates to the ICE biological parts registry software platform that enable these processes, describe our implementation of the Web of Registries concept using ICE, and establish Bioparts, a search portal for biological parts available in the public domain. The Web of Registries enables standalone ICE installations to securely connect and form a distributed parts database.

View Article and Find Full Text PDF