Publications by authors named "Thomas Ribar"

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder caused by a point mutation in the Lamin A gene that produces the protein progerin. Progerin toxicity leads to accelerated aging and death from cardiovascular disease. To elucidate the effects of progerin on endothelial cells, we prepared tissue-engineered blood vessels (viTEBVs) using induced pluripotent stem cell-derived smooth muscle cells (viSMCs) and endothelial cells (viECs) from HGPS patients.

View Article and Find Full Text PDF

Fibrolamellar carcinoma (FLC) is characterized by in-frame fusion of DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) with protein kinase cAMP-activated catalytic subunit α (PRKACA) and by dense desmoplasia. Surgery is the only effective treatment because mechanisms supporting tumor survival are unknown. We used single-cell RNA sequencing to characterize a patient-derived FLC xenograft model and identify therapeutic targets.

View Article and Find Full Text PDF

Background: Radium-223 is a targeted alpha-particle therapy that improves survival in men with metastatic castration resistant prostate cancer (mCRPC), particularly in men with elevated serum levels of bone alkaline phosphatase (B-ALP). We hypothesized that osteomimicry, a form of epithelial plasticity leading to an osteoblastic phenotype, may contribute to intralesional deposition of radium-223 and subsequent irradiation of the tumor microenvironment.

Methods: We conducted a pharmacodynamic study (NCT02204943) of radium-223 in men with bone mCRPC.

View Article and Find Full Text PDF

The generation of functional skeletal muscle tissues from human pluripotent stem cells (hPSCs) has not been reported. Here, we derive induced myogenic progenitor cells (iMPCs) via transient overexpression of Pax7 in paraxial mesoderm cells differentiated from hPSCs. In 2D culture, iMPCs readily differentiate into spontaneously contracting multinucleated myotubes and a pool of satellite-like cells endogenously expressing Pax7.

View Article and Find Full Text PDF

A number of epidemiological studies have implicated calcium (Ca(2+)) signaling as a major factor in obesity that contributes to aberrant systems metabolism. Somewhat paradoxically, obesity correlates with decreased circulating Ca(2+) levels, leading to increased release of intracellular Ca(2+) stores from the endoplasmic reticulum. These findings suggest that insulin resistance associated with the obese state is linked to activation of canonical Ca(2+) signaling pathways.

View Article and Find Full Text PDF

Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy.

View Article and Find Full Text PDF

Background And Purpose: Elevation of intracellular calcium was traditionally thought to be detrimental in stroke pathology. However, clinical trials testing treatments that block calcium signaling have failed to improve outcomes in ischemic stroke. Emerging data suggest that calcium may also trigger endogenous protective pathways after stroke.

View Article and Find Full Text PDF

In the intrinsic pathway of apoptosis, cell-damaging signals promote the release of cytochrome c from mitochondria, triggering activation of the Apaf-1 and caspase-9 apoptosome. The ubiquitin E3 ligase MDM2 decreases the stability of the proapoptotic factor p53. We show that it also coordinated apoptotic events in a p53-independent manner by ubiquitylating the apoptosome activator CAS and the ubiquitin E3 ligase HUWE1.

View Article and Find Full Text PDF

Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca(2+)/CaM-dependent protein kinase family that is expressed abundantly in brain. Previous work has revealed that CaMKK2 knockout (CaMKK2 KO) mice eat less due to a central nervous system -signaling defect and are protected from diet-induced obesity, glucose intolerance, and insulin resistance. However, here we show that pair feeding of wild-type mice to match food consumption of CAMKK2 mice slows weight gain but fails to protect from diet-induced glucose intolerance, suggesting that other alterations in CaMKK2 KO mice are responsible for their improved glucose metabolism.

View Article and Find Full Text PDF

When fed a standard chow diet, CaMKK2 null mice have increased adiposity and larger adipocytes than do wild-type mice, whereas energy balance is unchanged. Here, we show that Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is expressed in preadipocytes, where it functions as an AMP-activated protein kinase (AMPK)α kinase. Acute inhibition or deletion of CaMKK2 in preadipocytes enhances their differentiation into mature adipocytes, which can be reversed by 5-aminoimidazole-4-carboxamide ribonucleotide-mediated activation of AMPK.

View Article and Find Full Text PDF

Growth factor erv1-like (Gfer) is an evolutionarily conserved sulfhydryl oxidase that is enriched in embryonic and adult stem cells and plays an essential prosurvival role in pluripotent embryonic stem cells. Here we show that knockdown (KD) of Gfer in hematopoietic stem cells (HSCs) compromises their in vivo engraftment potential and triggers a hyper-proliferative response that leads to their exhaustion. KD of Gfer in HSCs does not elicit a significant alteration of mitochondrial morphology or loss of cell viability.

View Article and Find Full Text PDF

The Ca(2+)/calmodulin-activated kinases CaMKK2 and CaMKIV are highly expressed in the brain where they play important roles in activating intracellular responses to elevated Ca(2+). To address the biological functions of Ca(2+) signaling via these kinases during brain development, we have examined cerebellar development in mice null for CaMKK2 or CaMKIV. Here, we demonstrate that CaMKK2/CaMKIV-dependent phosphorylation of cAMP response element-binding protein (CREB) correlates with Bdnf transcription, which is required for normal development of cerebellar granule cell neurons.

View Article and Find Full Text PDF

The chromatin-binding factor high-mobility group box 1 (HMGB1) functions as a proinflammatory cytokine and late mediator of mortality in murine endotoxemia. Although serine phosphorylation of HMGB1 is necessary for nucleocytoplasmic shuttling before its cellular release, the protein kinases involved have not been identified. To investigate if calcium/calmodulin-dependent protein kinase (CaMK) IV serine phosphorylates and mediates the release of HMGB1 from macrophages (Mphi) stimulated with LPS, RAW 264.

View Article and Find Full Text PDF

Detailed knowledge of the pathways by which ghrelin and leptin signal to AMPK in hypothalamic neurons and lead to regulation of appetite and glucose homeostasis is central to the development of effective means to combat obesity. Here we identify CaMKK2 as a component of one of these pathways, show that it regulates hypothalamic production of the orexigenic hormone NPY, provide evidence that it functions as an AMPKalpha kinase in the hypothalamus, and demonstrate that it forms a unique signaling complex with AMPKalpha and beta. Acute pharmacologic inhibition of CaMKK2 in wild-type mice, but not CaMKK2 null mice, inhibits appetite and promotes weight loss consistent with decreased NPY and AgRP mRNAs.

View Article and Find Full Text PDF

Microbial products, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4), regulate the lifespan of dendritic cells (DCs) by largely undefined mechanisms. Here, we identify a role for calcium-calmodulin-dependent kinase IV (CaMKIV) in this survival program. The pharmacologic inhibition of CaMKs as well as ectopic expression of kinase-inactive CaMKIV decrease the viability of monocyte-derived DCs exposed to bacterial LPS.

View Article and Find Full Text PDF

The hematopoietic stem cell (HSC) gives rise to all mature, terminally differentiated cells of the blood. Here we show that calmodulin-dependent protein kinase IV (CaMKIV) is present in c-Kit+ ScaI+ Lin(-/low) hematopoietic progenitor cells (KLS cells) and that its absence results in hematopoietic failure, characterized by a diminished KLS cell population and by an inability of these cells to reconstitute blood cells upon serial transplantation. KLS cell failure in the absence of CaMKIV is correlated with increased apoptosis and proliferation of these cells in vivo and in vitro.

View Article and Find Full Text PDF

Mammalian skeletal muscles undergo adaptation in response to alteration in functional demands by means of a variety of cellular signaling events. Previous experiments in transgenic mice showed that an active form of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) is capable of stimulating peroxisome proliferator-activated receptor gamma-coactivator 1alpha (PGC-1alpha) gene expression, promoting fast-to-slow fiber type switching and augmenting mitochondrial biogenesis in skeletal muscle. However, a role for endogenous CaMKIV in skeletal muscle has not been investigated rigorously.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a nuclear protein kinase that responds to acute rises in intracellular calcium by phosphorylating and activating proteins involved in transcription. Consistent with these roles, CaMKIV is found predominantly in the nucleus of cells in which it is expressed. Here we evaluate nuclear entry of CaMKIV and demonstrate that the protein kinase homology domain is both necessary and sufficient for nuclear localization.

View Article and Find Full Text PDF

We investigated the mechanism of beta-cell loss in transgenic mice with elevated levels of beta cell calmodulin. The transgenic mice experienced a sudden rise in blood glucose levels between 21 and 28 days of age. This change was associated with development of severe hypoinsulinemia and loss of beta cells from the islets.

View Article and Find Full Text PDF

The neurotoxic industrial solvents n-hexane and methyl n-butyl ketone are toxic by virtue of their common metabolite, 2,5-hexanedione (2,5-HD). Our previous work showed that pyrrole-like substances in solubilized rat hair proteins from rats injected (ip) daily with 2,5-HD demonstrated maximal absorbance in the 530-nm spectral region following reaction with Ehrlich's reagent (p-dimethylaminobenzaldehyde). Modification of the current analytical methods of achieving high specificity and lower detection limits with small sample quantities could have important implications for monitoring human populations.

View Article and Find Full Text PDF