Concerns about the possible effects of pesticide residues on both the environment and human health have increased worldwide. Bioremediation by the use of microorganisms to degrade or remove these residues has emerged as a powerful technology. However, the knowledge about the potential of different microorganisms for pesticide degradation is limited.
View Article and Find Full Text PDFMaintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane.
View Article and Find Full Text PDFZero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation.
View Article and Find Full Text PDFThe pollutant perchloroethene (PCE) can often be found at urban contaminated sites. Thus in-situ clean-up methods, like remediation using zero valent iron (ZVI) or bacterial dechlorination, are preferred. During the remediation with ZVI particles anaerobic corrosion occurs as an unwanted, particle consuming side reaction with water.
View Article and Find Full Text PDFPetroleum contamination and its remediation via plant-based solutions have got increasing attention by environmental scientists and engineers. In the current study, the physiological and growth responses of two diesel-tolerant plant species (tolerance limit: 1500-2000 mg/kg), Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus), have been investigated in vegetable oil- and diesel oil-amended soils. A long-term (147-day) greenhouse pot experiment was conducted to differentiate the main focus of the study: physical and chemical effects of oil (vegetable and diesel) in freshly spiked soils via evaluating the plant performance and hydrocarbon degradation.
View Article and Find Full Text PDFEnvironmental problems such as the deterioration of groundwater quality, soil degradation and various threats to human, animal and ecosystem health are closely related to the presence of high concentrations of organic xenobiotics in the environment. Employing appropriate technologies to remediate contaminated soils is crucial due to the site-specificity of most remediation methods. The limitations of conventional remediation technologies include poor environmental compatibility, high cost of implementation and poor public acceptability.
View Article and Find Full Text PDFIn soil, mixed contamination with potentially toxic trace elements and polycyclic aromatic hydrocarbons (PAHs) may persist for a long time due to strong adsorption to the soil matrix and to its toxicity to microorganism. We conducted an incubation batch experiment to test the effect of soil amendments (biochar, gravel sludge, iron oxides) on the immobilisation of trace elements. To monitor microbial degradation, a C-PHE (phenanthrene) label was introduced to soil for C-PLFA (phospholipid fatty acid) analysis.
View Article and Find Full Text PDFThe evaluation of groundwater contaminant e.g. tetrachloroethene (PCE) degradation processes requires complete quantification of and pathway analysis of the groundwater contaminant under investigation.
View Article and Find Full Text PDFCo-contaminations of soils with organic and inorganic pollutants are a frequent environmental problem. Due to their toxicity and recalcitrance, the heterogeneous pollutants may persist in soil. The hypothesis of this study was that degradation of polycyclic aromatic hydrocarbons (PAHs) is enhanced if heavy metals in soil are immobilized and their bioavailability reduced.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2017
Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
October 2017
Rationale: Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conventionally rely on separate laboratory microcosm studies. Here, we present an evaluation method enabling the determination of the carbon isotope enrichment factor (ε) for the intermediate cis-dichloroethene (cis-DCE) by a single laboratory microcosm study initially amending the precursor PCE only.
View Article and Find Full Text PDFEnviron Monit Assess
June 2016
Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries.
View Article and Find Full Text PDFInt J Phytoremediation
December 2016
Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1).
View Article and Find Full Text PDFNanoscale zero-valent iron particles (nZVI) are already applied for in-situ dechlorination of halogenated organic contaminants in the field. We performed batch experiments whereby trichloroethene (TCE) was dehalogenated by nZVI under different environmental conditions that are relevant in practice. The tested conditions include different ionic strengths, addition of polyelectrolytes (carboxymethylcellulose and ligninsulphonate), lowered temperature, dissolved oxygen and different particle contents.
View Article and Find Full Text PDFPlants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested.
View Article and Find Full Text PDFStable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions.
View Article and Find Full Text PDFLandfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance.
View Article and Find Full Text PDFPlants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains.
View Article and Find Full Text PDFThe genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E.
View Article and Find Full Text PDFThe combined use of plants and associated microorganisms has great potential for cleaning up soils contaminated with petroleum hydrocarbons. Apart from environmental conditions the physicochemical properties of the soil are the main factors influencing the survival and activity of an inoculated strain as well as the growth of plants. This study examined the effect of different soil types (sandy, loamy sand and loam) on the survival, gene abundance and catabolic gene expression of two inoculated strains (Pseudomonas sp.
View Article and Find Full Text PDFNitrate is a dominant form of inorganic nitrogen (N) in soils and can be efficiently assimilated by bacteria, fungi and plants. We studied here the transcriptome of the short-term nitrate response using assimilating and non-assimilating strains of the model ascomycete Aspergillus nidulans. Among the 72 genes positively responding to nitrate, only 18 genes carry binding sites for the pathway-specific activator NirA.
View Article and Find Full Text PDFInteractions between transition metal ions and polyphenols can result in complexation, redox or polymerization, but the relative importance of these reactions is unclear. The present paper reports results from the reaction of gallic acid (GA) with Cu(II) using electron paramagnetic resonance (EPR) and UV/visible spectroscopy for various relative concentrations and pH values. Reduction of Cu(II) by GA does not occur under strongly acidic or strongly alkaline conditions.
View Article and Find Full Text PDFMethane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study.
View Article and Find Full Text PDFTwenty-six different plant species were analyzed regarding their performance in soil contaminated with petroleum oil. Two well-performing species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var.
View Article and Find Full Text PDF