Publications by authors named "Thomas Regnault"

HKT Na transporters correspond to major salt tolerance QTLs in different plant species and are targets of great interest for breeders. In rice, the HKT family is composed of seven or eight functional genes depending on cultivars. Three rice genes, , and , are known to contribute to salt tolerance by reducing Na accumulation in shoots upon salt stress.

View Article and Find Full Text PDF

Plants are able to sense a rise in temperature of several degrees, and appropriately adapt their metabolic and growth processes. To this end, plants produce various signalling molecules that act throughout the plant body. Here, we report that root-derived GA, a precursor of the bioactive gibberellins, mediates thermo-responsive shoot growth in Arabidopsis.

View Article and Find Full Text PDF
Article Synopsis
  • Gibberellins (GAs) are crucial plant hormones involved in various developmental processes, but their transport and distribution mechanisms are still not well understood.
  • Using fluorescently labeled GAs (GA-Fl), the study identified the NPF3 transporter in Arabidopsis, which is responsible for the efficient transport of GA across cell membranes.
  • NPF3 is regulated by GA itself, expressed in root endodermis, and also facilitates the transport of abscisic acid (ABA), indicating a possible interaction between GA and ABA during the transport process.
View Article and Find Full Text PDF

Iron is an essential element for most living organisms. Plants acquire iron from the rhizosphere and have evolved different biochemical and developmental responses to adapt to a low-iron environment. In Arabidopsis, FIT encodes a basic helix-loop-helix transcription factor that activates the expression of iron-uptake genes in root epidermis upon iron deficiency.

View Article and Find Full Text PDF

Gibberellins (GAs) are phytohormones controlling major aspects of plant growth and development. Although previous studies suggested the existence of a transport of GAs in plants, the nature and properties associated with this transport were unknown. We recently showed through micrografting and biochemical approaches that the GA12 precursor is the chemical form of GA undergoing long-distance transport across plant organs in Arabidopsis.

View Article and Find Full Text PDF

The gibberellin (GA) phytohormones play important roles in plant growth and development, promoting seed germination, elongation growth and reproductive development(1). Over the years, substantial progress has been made in understanding the regulation of GA signalling and metabolism, which ensures appropriate levels of GAs for growth and development(2). Moreover, an additional level of regulation may reside in the transport of GAs from production sites to recipient tissues that require GAs for growth.

View Article and Find Full Text PDF

Ent-kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent-kaurenoic acid (KA) to gibberellin (GA) GA12 , the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2.

View Article and Find Full Text PDF

Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging.

View Article and Find Full Text PDF

Gibberellins (GAs) are plant hormones involved in the regulation of plant growth in response to endogenous and environmental signals. GA promotes growth by stimulating the degradation of nuclear growth-repressing DELLA proteins. In Arabidopsis thaliana, DELLAs consist of a small family of five proteins that display distinct but also overlapping functions in repressing GA responses.

View Article and Find Full Text PDF