Fractional flow reserve (FFR) is often used to evaluate the physiological severity of intermediate coronary stenoses, but less-invasive assessment methods are desirable. We evaluated the feasibility of angiographic FFR (angioFFR) calculated from two projections acquired simultaneously by a biplane C-arm system and angioFFR calculated from two projections acquired independently by one plane of the same biplane C-arm system. AngioFFR was validated against FFR in terms of detection of hemodynamically relevant coronary artery stenoses.
View Article and Find Full Text PDFIn recent years, computational fluid dynamics (CFD) has become a valuable tool for investigating hemodynamics in cerebral aneurysms. CFD provides flow-related quantities, which have been shown to have a potential impact on aneurysm growth and risk of rupture. However, the adoption of CFD tools in clinical settings is currently limited by the high computational cost and the engineering expertise required for employing these tools, e.
View Article and Find Full Text PDFBackground and Purpose- Therapeutic decision making for small unruptured intracranial aneurysms (<10 mm) is difficult. We aimed to develop a rupture risk model for small intracranial aneurysms in Japanese adults, including clinical, morphological, and hemodynamic parameters. Methods- We analyzed 338 small unruptured aneurysms; 35 ruptured during the observation period, and 303 remained stable.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
August 2018
Purpose: In coronary angiography, the condition of myocardial blood supply is assessed by analyzing 2-D X-ray projections of contrasted coronary arteries. This is done using a flexible C-arm system. Due to the X-ray immanent dimensionality reduction projecting the 3-D scene onto a 2-D image, the viewpoint is critical to guarantee an appropriate view onto the affected artery and, thus, enable reliable diagnosis.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Image-based blood flow simulations can provide detailed hemodynamic information in diseased vessels such as intracranial aneurysms. However, validation is essential to evaluate the accuracy of these computations and further improve their acceptance among physicians. In this regard, tomographic particle image velocimetry was used to measure the flow characteristics in a patient specific aneurysm phantom model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Computational Fluid Dynamics enables the investigation of patient-specific hemodynamics for rupture predictions and treatment support of intracranial aneurysms. However, due to numerous simplifications to decrease the computations effort, clinical applicability is limited until now. To overcome this situation a clinical research software prototype was tested that can be easily operated by attending physicians.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Owing to its clinical importance, there has been a growing body of research on understanding the hemodynamics of cerebral aneurysms. Traditionally, this work has been performed using general-purpose, state-of-the-art commercial solvers. This has meant requiring engineering expertise for making appropriate choices on the geometric discretization, time-step selection, choice of boundary conditions etc.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2016
Purpose: Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions.
Methods: We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow.
Annu Int Conf IEEE Eng Med Biol Soc
September 2016
Subarachnoid hemorrhage due to a ruptured cerebral aneurysm is still a devastating disease. Planning of endovascular aneurysm therapy is increasingly based on hemodynamic simulations necessitating reliable vessel segmentation and accurate assessment of vessel diameters. In this work, we propose a fully-automatic, locally adaptive, gradient-based thresholding algorithm.
View Article and Find Full Text PDFInvasive fractional flow reserve (FFRinvasive), although gold standard to identify hemodynamically relevant coronary stenoses, is time consuming and potentially associated with complications. We developed and evaluated a new approach to determine lesion-specific FFR on the basis of coronary anatomy as visualized by invasive coronary angiography (FFRangio): 100 coronary lesions (50% to 90% diameter stenosis) in 73 patients (48 men, 25 women; mean age 67 ± 9 years) were studied. On the basis of coronary angiograms acquired at rest from 2 views at angulations at least 30° apart, a PC-based computational fluid dynamics modeling software used personalized boundary conditions determined from 3-dimensional reconstructed angiography, heart rate, and blood pressure to derive FFRangio.
View Article and Find Full Text PDFFlow diversion is an emerging endovascular treatment option for cerebral aneurysms. Quantitative assessment of hemodynamic changes induced by flow diversion can aid clinical decision making in the treatment of cerebral aneurysms. In this article, besides summarizing past key research efforts, we propose a novel metric for the angiographic assessment of flow diverter deployments in the treatment of cerebral aneurysms.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) techniques have been refined for modeling the hemodynamics in cerebral aneurysms. Recent interest has focused on understanding hemodynamic changes by treatment with a flow diverter (FD), i.e.
View Article and Find Full Text PDFIncreasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities, virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired angiograms.
View Article and Find Full Text PDFHaemodynamic factors, in particular wall shear stresses (WSSs) may have significant impact on growth and rupture of cerebral aneurysms. Without a means to measure WSS reliably in vivo, computational fluid dynamic (CFD) simulations are frequently employed to visualise and quantify blood flow from patient-specific computational models. With increasing interest in integrating these CFD simulations into pretreatment planning, a better understanding of the validity of the calculations in respect to computation parameters such as volume element type, mesh size and mesh composition is needed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
Stanford type B aortic dissections (TB-AD), which split the descending aorta in a true and false lumen, have better in-hospital survival than type A dissections affecting the ascending aorta. However, short-term and long-term prognosis for the individual patient remains challenging, with one in four patients not surviving after 3 years.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Computational fluid dynamic (CFD) based on patient-specific medical imaging data has found widespread use for visualizing and quantifying hemodynamics in cerebrovascular disease such as cerebral aneurysms or stenotic vessels. This paper focuses on optimizing mesh parameters for CFD simulation of cerebral aneurysms. Valid blood flow simulations strongly depend on the mesh quality.
View Article and Find Full Text PDFPurpose: Intravascular optical coherence tomography (OCT) is a new imaging modality that provides microstructural information on atherosclerotic plaques and has an axial resolution of 10-20 microm. OCT of coronary arteries characterizes different atherosclerotic plaque components by their distinctive signal patterns. Peripheral human arteries were examined ex vivo by means of OCT, and attempts to distinguish among fibrous, lipid-rich, and calcified atherosclerotic plaques were made based on imaging criteria previously established for coronary arteries.
View Article and Find Full Text PDF