Antibody-drug conjugates (ADCs) are an established modality that allow for targeted delivery of a potent molecule, or payload, to a desired site of action. ADCs, wherein the payload is a targeted protein degrader, are an emerging area in the field. Herein we describe our efforts of delivering a Bruton's tyrosine kinase (BTK) bifunctional degrader via a CD79b mAb (monoclonal antibody) where the degrader is linked at the ligase binding portion of the payload via a cleavable linker to the mAb.
View Article and Find Full Text PDFTargeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD.
View Article and Find Full Text PDFIn this study, we describe the rapid identification of potent binders for the WD40 repeat domain (WDR) of DCAF1. This was achieved by two rounds of iterative focused screening of a small set of compounds selected on the basis of internal WDR domain knowledge followed by hit expansion. Subsequent structure-based design led to nanomolar potency binders with a clear exit vector enabling DCAF1-based bifunctional degrader exploration.
View Article and Find Full Text PDFPlasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g.
View Article and Find Full Text PDFUnlabelled: Preventing development of childhood B-cell acute lymphoblastic leukemia (B-ALL), a disease with devastating effects, is a longstanding and unsolved challenge. Heterozygous germline alterations in the PAX5 gene can lead to B-ALL upon accumulation of secondary mutations affecting the JAK/STAT signaling pathway. Preclinical studies have shown that this malignant transformation occurs only under immune stress such as exposure to infectious pathogens.
View Article and Find Full Text PDFMALT1 plays a central role in immune cell activation by transducing NF-κB signaling, and its proteolytic activity represents a key node for therapeutic intervention. Two cycles of scaffold morphing of a high-throughput biochemical screening hit resulted in the discovery of MLT-231, which enabled the successful pharmacological validation of MALT1 allosteric inhibition in preclinical models of humoral immune responses and B-cell lymphomas. Herein, we report the structural activity relationships (SARs) and analysis of the physicochemical properties of a pyrazolopyrimidine-derived compound series.
View Article and Find Full Text PDFThe paracaspase MALT1 has gained increasing interest as a target for the treatment of subsets of lymphomas as well as autoimmune diseases, and there is a need for suitable compounds to explore the therapeutic potential of this target. Here, we report the optimization of the potency of pyrazolopyrimidines, a class of highly selective allosteric MALT1 inhibitors. High doses of the initial lead compound led to tumor stasis in an activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) xenograft model, but this compound suffered from a short half-life and suboptimal potency in whole blood.
View Article and Find Full Text PDFMYC oncoprotein is a multifunctional transcription factor that regulates the expression of a large number of genes involved in cellular growth, proliferation and metabolism. Altered MYC protein level lead to cellular transformation and tumorigenesis. MYC is deregulated in > 50% of human cancers, rendering it an attractive drug target.
View Article and Find Full Text PDFMyeloproliferative neoplasms polycythemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis constitute a group of haematological diseases. The comprehensive assessment of signaling pathway activation in blood cells may aid the understanding of MPN pathophysiology. Thus, levels of post-translational protein modifications and total protein expression were determined in MPN patients and control leukocytes by using reverse-phase protein arrays (RPPA).
View Article and Find Full Text PDF1,3-Substituted pyrazolo[3,4-]pyridinones - were synthesized by a three-component condensation of Meldrum's acid with aryl aldehydes and 1,3-substituted 5-aminopyrazoles. Their biological activity was evaluated using the phenotypic sea urchin embryo assay and the cytotoxicity screen against human cancer cell lines. In the sea urchin embryo model, 1-benzimidazolyl-pyrazolo[3,4-]pyridinones caused inhibition of hatching and spiculogenesis at sub-micromolar concentrations.
View Article and Find Full Text PDFAberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients.
View Article and Find Full Text PDFIncreased energy requirement and metabolic reprogramming are hallmarks of cancer cells. We show that metabolic alterations in hematopoietic cells are fundamental to the pathogenesis of mutant JAK2-driven myeloproliferative neoplasms (MPNs). We found that expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells, resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue atrophy, and early mortality.
View Article and Find Full Text PDFThe oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding.
View Article and Find Full Text PDFConstitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition.
View Article and Find Full Text PDFStarting from a weak screening hit, potent and selective inhibitors of the MALT1 protease function were elaborated. Advanced compounds displayed high potency in biochemical and cellular assays. Compounds showed activity in a mechanistic Jurkat T cell activation assay as well as in the B-cell lymphoma line OCI-Ly3, which suggests potential use of MALT1 inhibitors in the treatment of autoimmune diseases as well as B-cell lymphomas with a dysregulated NF-κB pathway.
View Article and Find Full Text PDFDrug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material.
View Article and Find Full Text PDFMutations in JAK2 exon 12 are frequently found in patients with polycythemia vera (PV) that do not carry a JAK2-V617F mutation. The majority of these patients display isolated erythrocytosis. We generated a mouse model that expresses JAK2-N542-E543del, the most frequent JAK2 exon 12 mutation found in PV patients.
View Article and Find Full Text PDFA variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation.
View Article and Find Full Text PDFUnlabelled: The identification of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) has led to the clinical development of JAK kinase inhibitors, including ruxolitinib. Ruxolitinib reduces splenomegaly and systemic symptoms in myelofibrosis and improves overall survival; however, the mechanism by which JAK inhibitors achieve efficacy has not been delineated. Patients with MPN present with increased levels of circulating proinflammatory cytokines, which are mitigated by JAK inhibitor therapy.
View Article and Find Full Text PDFBackground: The JAK-STAT pathway is an important signaling pathway downstream of multiple cytokine and growth factor receptors. Dysregulated JAK-STAT signaling has been implicated in the pathogenesis of multiple human malignancies.
Objective: Given this pivotal role of JAK-STAT dysregulation, it is important to identify patients with an overactive JAK-STAT pathway for possible treatment with JAK inhibitors.
Janus kinases are critical components of signaling pathways that regulate hematopoiesis. Mutations of the non-receptor tyrosine kinase JAK2 are found in many BCR-ABL-negative myeloproliferative neoplasms. Preclinical results support that JAK2 inhibitors could show efficacy in treating chronic myeloproliferative neoplasms.
View Article and Find Full Text PDFThe widespread hyperactivation of the PI3K/mTOR pathway in human cancer has made it a prime target for the treatment of this disease. However, a variety of resistance mechanisms involving (re)activation of the targeted pathway or of parallel survival signaling cascades have limited the clinical success of inhibitors targeting PI3K and/or mTOR. Recent studies delineated new crosstalks between PI3K, HER2, JAK2 and IL-8 signaling, which can explain the limited efficacy of PI3K blockade when inhibitors of this pathway are used as single agents.
View Article and Find Full Text PDFPurpose: The myeloproliferative neoplasm myelofibrosis is characterized by frequent deregulation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, and JAK inhibitors were shown to reduce splenomegaly and ameliorate disease-related symptoms. However, the mutant clone and bone marrow fibrosis persist in the majority of patients. Using preclinical models, we explored whether JAK and pan-deacetylase inhibitor combination yielded additional benefits.
View Article and Find Full Text PDF