Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe.
View Article and Find Full Text PDFThe separation and anti-fouling performance of water purification membranes is governed by both macroscopic and molecular-scale water properties near polymer surfaces. However, even for poly(ethylene oxide) (PEO) - ubiquitously used in membrane materials - there is little understanding of whether or how the molecular structure of water near PEO surfaces affects macroscopic water diffusion. Here, we probe both time-averaged bulk and local water dynamics in dilute and concentrated PEO solutions using a unique combination of experimental and simulation tools.
View Article and Find Full Text PDFWater's unique thermophysical properties and how it mediates aqueous interactions between solutes have long been interpreted in terms of its collective molecular structure. The seminal work of Errington and Debenedetti [ , , 318-321] revealed a striking hierarchy of relationships among the thermodynamic, dynamic, and structural properties of water, motivating many efforts to understand (1) what measures of water structure are connected to different experimentally accessible macroscopic responses and (2) how many such structural metrics are adequate to describe the collective structural behavior of water. Diffusivity constitutes a particularly interesting experimentally accessible equilibrium property to investigate such relationships because advanced NMR techniques allow the measurement of bulk and local water dynamics in nanometer proximity to molecules and interfaces, suggesting the enticing possibility of measuring local diffusivities that report on water structure.
View Article and Find Full Text PDF