Publications by authors named "Thomas R Stratton"

The development of polymers that are both bactericidal and biocompatible would have many applications and are currently of substantial research interest. It is well known that polymers of alkyl-quaternized poly(4-vinylpyridine) are known to be effective against a wide range of microbes: when copolymerized with monomers that form biocompatible materials, they has also been shown to possess biocompatible properties. However, the relationship of the various physical and chemical properties of these polymers and copolymers with the antibacterial and biocompatible properties remains poorly understood: maximizing the selectivity and performance of these materials is absolutely needed before they have the potential for commercial applications.

View Article and Find Full Text PDF

The development of polymers that are both bactericidal and biocompatible would have many applications and are currently of research interest. Following the development of strongly bactericidal copolymers of 4-vinylpyridine and poly(ethylene glycol) methyl ether methacrylate, biocompatibility assays have been completed on these materials to measure their potential biocompatibility. In this article, a new methodology for measuring protein interaction was developed for water-soluble polymers by coupling proteins to surfaces and then measuring the adsorption of copolymers onto these surfaces.

View Article and Find Full Text PDF

Quaternized copolymers of 4-vinylpyridine and poly(ethylene glycol) methyl ether methacrylate are known to have antibacterial properties and have displayed biocompatibility in red blood cell hemolysis assays. The results from hemolysis assays have shown substantial promise, but the technique is rudimentary and only a first step toward the determination of biocompatibility. The present paper further explores the biocompatibility of these copolymers through comprehensive cell viability assays performed on Caco-2 human epithelial cells cultivated in vitro.

View Article and Find Full Text PDF

We report the results of an experimental study of a colloid fluid confined to a quasi-one-dimensional (q1D) ribbon channel as a function of channel width and colloid density. Our findings confirm the principal predictions of previous theoretical studies of such systems. These are (1) that the density distribution of the liquid transverse to the ribbon channel exhibits stratification; (2) that even at the highest density the order along the strata, as measured by the longitudinal pair correlation function, is characteristic of a liquid; and (3) the q1D pair correlation functions in different strata exhibit anisotropic behavior resembling that found in a Monte Carlo simulation for the in-plane pair correlation function of a hard sphere fluid in a planar slit.

View Article and Find Full Text PDF

Quaternized poly(4-vinyl pyridine)-based copolymers are known to be effective against a wide range of bacteria and possess biocompatible properties. Extensive testing of a wide range of copolymers is necessary to further explore and enhance the biocidal properties. However, testing is hampered by labor-intensive bacteria testing techniques.

View Article and Find Full Text PDF

Poly(lauryl methacrylate-co-ethylene dimethacrylate) and poly(styrene-co-divinylbenzene) stationary phases in monolithic format have been prepared by thermally initiated free radical polymerization within polyimide chips featuring channels having a cross-section of 200micromx200microm and a length of 6.8cm. These chips were then used for the separation of a mixture of proteins including ribonuclease A, myoglobin, cytochrome c, and ovalbumin, as well as peptides.

View Article and Find Full Text PDF